About: Calcite sea     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCalcite_sea&invfp=IFP_OFF&sas=SAME_AS_OFF&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

A calcite sea is a sea in which low-magnesium calcite is the primary inorganic marine calcium carbonate precipitate. An aragonite sea is the alternate seawater chemistry in which aragonite and high-magnesium calcite are the primary inorganic carbonate precipitates. The Early Paleozoic and the Middle to Late Mesozoic oceans were predominantly calcite seas, whereas the Middle Paleozoic through the Early Mesozoic and the Cenozoic (including today) are characterized by aragonite seas. * Table showing the conditions for calcite and aragonite seas * * * * * *

AttributesValues
rdfs:label
  • Mar calcítico (es)
  • Calcite sea (en)
rdfs:comment
  • A calcite sea is a sea in which low-magnesium calcite is the primary inorganic marine calcium carbonate precipitate. An aragonite sea is the alternate seawater chemistry in which aragonite and high-magnesium calcite are the primary inorganic carbonate precipitates. The Early Paleozoic and the Middle to Late Mesozoic oceans were predominantly calcite seas, whereas the Middle Paleozoic through the Early Mesozoic and the Cenozoic (including today) are characterized by aragonite seas. * Table showing the conditions for calcite and aragonite seas * * * * * * (en)
  • Un mar calcítico es uno en el que la calcita baja en magnesio es el principal precipitado inorgánico de carbonato de calcio marino. Un mar aragonítico es la química alternativa del agua de mar en la cual la aragonita y la calcita de alto magnesio son los principales precipitados de carbonato inorgánico. Los océanos Paleozoico Temprano y Mesozoico Medio y Tardío fueron predominantemente mares calcíticos, mientras que el Paleozoico Medio a través del Mesozoico Temprano y el Cenozoico (incluso hoy) se caracterizan por mares aragoníticos (Wilkinson et al., 1985; Wilkinson y Given, 1986; Morse y Mackenzie, 1990; Hardie 1996; Lowenstein et al., 2001; Palmer y Wilson, 2004). (es)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/CalciteAragonite.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/CarmelHdgd.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/CalciteSeasTable.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/EncrustedBivalveMold.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Encrusted_Ordovician_nautiloid_InternalExternal.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Paleosabella4CS.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Petroxestes_borings_Ordovician.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/MgCaRatioChanges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/OoidSurface01.jpg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • A calcite sea is a sea in which low-magnesium calcite is the primary inorganic marine calcium carbonate precipitate. An aragonite sea is the alternate seawater chemistry in which aragonite and high-magnesium calcite are the primary inorganic carbonate precipitates. The Early Paleozoic and the Middle to Late Mesozoic oceans were predominantly calcite seas, whereas the Middle Paleozoic through the Early Mesozoic and the Cenozoic (including today) are characterized by aragonite seas. The most significant geological and biological effects of calcite sea conditions include rapid and widespread formation of carbonate hardgrounds, calcitic ooids, calcite cements, and the contemporaneous dissolution of aragonite shells in shallow warm seas. Hardgrounds were very common, for example, in the calcite seas of the Ordovician and Jurassic, but virtually absent from the aragonite seas of the Permian. Fossils of invertebrate organisms found in calcite sea deposits are usually dominated by either thick calcite shells and skeletons, were infaunal and/or had thick periostraca, or had an inner shell of aragonite and an outer shell of calcite. This was apparently because aragonite dissolved quickly on the seafloor and had to be either avoided or protected as a biomineral. Calcite seas were coincident with times of rapid seafloor spreading and global greenhouse climate conditions. Seafloor spreading centers cycle seawater through hydrothermal vents, reducing the ratio of magnesium to calcium in the seawater through metamorphism of calcium-rich minerals in basalt to magnesium-rich clays. This reduction in the Mg/Ca ratio favors the precipitation of calcite over aragonite. Increased seafloor spreading also means increased volcanism and elevated levels of carbon dioxide in the atmosphere and oceans. This may also have an effect on which polymorph of calcium carbonate is precipitated. Further, high calcium concentrations of seawater favor the burial of CaCO3, thereby removing alkalinity from the ocean, lowering seawater pH and reducing its acid/base buffering. * Table showing the conditions for calcite and aragonite seas * Tectonic mechanism for changing Mg/Ca ratios in seawater * Grainstone with calcitic ooids and sparry calcite cement; Carmel Formation, Middle Jurassic, of southern Utah * An encrusted Ordovician bivalve external mold showing contemporaneous dissolution of the original aragonite shell and calcitic cementation of the mold * An encrusted Ordovician nautiloid internal mold showing contemporaneous dissolution of the original aragonite shell and calcitic cementation * The boring Palaeosabella in an Ordovician bivalve shell. The borings penetrated an inner aragonitic shell layer which dissolved away. * Petroxestes borings in an Upper Ordovician hardground, southern Ohio (en)
  • Un mar calcítico es uno en el que la calcita baja en magnesio es el principal precipitado inorgánico de carbonato de calcio marino. Un mar aragonítico es la química alternativa del agua de mar en la cual la aragonita y la calcita de alto magnesio son los principales precipitados de carbonato inorgánico. Los océanos Paleozoico Temprano y Mesozoico Medio y Tardío fueron predominantemente mares calcíticos, mientras que el Paleozoico Medio a través del Mesozoico Temprano y el Cenozoico (incluso hoy) se caracterizan por mares aragoníticos (Wilkinson et al., 1985; Wilkinson y Given, 1986; Morse y Mackenzie, 1990; Hardie 1996; Lowenstein et al., 2001; Palmer y Wilson, 2004). Los efectos geológicos y biológicos más importantes de las condiciones del mar de calcita incluyen la formación rápida y generalizada de precipitados duros de carbonato (Palmer, 1982; Palmer et al., 1988; Wilson y Palmer, 1992), ooides calcíticos (Sandberg, 1983; Wilkinson et al. 1985), cementos de calcita (Wilkinson y Given, 1986) y la disolución contemporánea de las cáscaras de aragonito en mares cálidos poco profundos (Cherns y Wright, 2000; Palmer y Wilson, 2004). Los terrenos duros eran muy comunes, por ejemplo, en los mares de calcita del Ordovícico y el Jurásico, pero prácticamente ausentes de los mares aragonitos del Pérmico (Palmer, 1982). Los fósiles de organismos invertebrados que se encuentran en los depósitos marinos de calcita suelen estar dominados por conchillas gruesas de calcita y/o esqueletos (Wilkinson, 1979; Stanley y Hardie, 1998, 1999; Porter, 2007), fueron y/o tenían perióstraco grueso (Pojeta, 1971), o tenían una capa interna de aragonita y una capa exterior de calcita (Harper et al., 1997). Aparentemente, esto se debía a que la aragonita se disolvía rápidamente en el lecho marino y tuvo que ser evitado o protegido como biomineral (Palmer y Wilson, 2004). Los mares de calcita coincidieron con los tiempos de rápida expansión del lecho marino y las condiciones globales del clima de invernadero (Stanley y Hardie, 1999). Los centros de expansión del lecho marino ciclan el agua de mar a través de las fuentes hidrotermales, reduciendo la proporción de Mg/Ca en el agua de mar a través del metamorfismo de minerales ricos en calcio en basalto a arcillas ricas en magnesio (Wilkinson y Given, 1986; Lowenstein et al., 2001). Esta reducción en la relación Mg/Ca favorece la precipitación de calcita sobre aragonito. El aumento de la expansión del lecho marino también significa un mayor vulcanismo y niveles elevados de dióxido de carbono en la atmósfera y los océanos. Esto también puede tener un efecto sobre qué polimorfo de carbonato de calcio se precipita (Lowenstein et al., 2001). Además, las altas concentraciones de calcio del agua de mar favorecen el entierro de CaCO3, eliminando así la alcalinidad del océano, disminuyendo el pH del agua de mar y reduciendo el buffer ácido / base. (es)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software