About: MEMS for in situ mechanical characterization     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMEMS_for_in_situ_mechanical_characterization&invfp=IFP_OFF&sas=SAME_AS_OFF&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

MEMS for in situ mechanical characterization refers to microelectromechanical systems (MEMS) used to measure the mechanical properties (such as the Young’s modulus and fracture strength) of nanoscale specimens such as nanowires, nanorods, whiskers, nanotubes and thin films. They distinguish themselves from other methods of nanomechanical testing because the sensing and actuation mechanisms are embedded and/or co-fabricated in the microsystem, providing—in the majority of cases—greater sensitivity and precision.

AttributesValues
rdfs:label
  • MEMS for in situ mechanical characterization (en)
rdfs:comment
  • MEMS for in situ mechanical characterization refers to microelectromechanical systems (MEMS) used to measure the mechanical properties (such as the Young’s modulus and fracture strength) of nanoscale specimens such as nanowires, nanorods, whiskers, nanotubes and thin films. They distinguish themselves from other methods of nanomechanical testing because the sensing and actuation mechanisms are embedded and/or co-fabricated in the microsystem, providing—in the majority of cases—greater sensitivity and precision. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/MEMS_In_Situ_TEM_Device.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • MEMS for in situ mechanical characterization refers to microelectromechanical systems (MEMS) used to measure the mechanical properties (such as the Young’s modulus and fracture strength) of nanoscale specimens such as nanowires, nanorods, whiskers, nanotubes and thin films. They distinguish themselves from other methods of nanomechanical testing because the sensing and actuation mechanisms are embedded and/or co-fabricated in the microsystem, providing—in the majority of cases—greater sensitivity and precision. This level of integration and miniaturization allows carrying out the mechanical characterization in situ, i.e., testing while observing the evolution of the sample in high magnification instruments such as optical microscopes, scanning electron microscopes (SEM), transmission electron microscopes (TEM) and X-ray setups. Furthermore, analytical capabilities of these instruments such as spectroscopy and diffraction can be used to further characterize the sample, providing a complete picture of the evolution of the specimen as it is loaded and fails. Owing to the development of mature MEMS microfabrication technologies, the use of these microsystems for research purposes has been increasing in recent years. Most of the current developments aim to implement in situ mechanical testing coupled with other type of measurements, such as electrical or thermal, and to extend the range of samples tested to the biological domain, testing specimens such as cells and collagen fibrils. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software