About: Pickering emulsion     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDosageForms, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPickering_emulsion&invfp=IFP_OFF&sas=SAME_AS_OFF&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

A Pickering emulsion is an emulsion that is stabilized by solid particles (for example colloidal silica) which adsorb onto the interface between the water and oil phases. Typically, the emulsions are either water-in-oil or oil-in-water emulsions, but other more complex systems such as water-in-water, oil-in-oil, water-in-oil-in-water, and oil-in-water-in-oil also do exist. Pickering emulsions were named after S.U. Pickering, who described the phenomenon in 1907, although the effect was first recognized by Walter Ramsden in 1903.

AttributesValues
rdf:type
rdfs:label
  • Emulsión Pickering (es)
  • ラムスデン現象 (ja)
  • Pickering emulsion (en)
  • Pickering-emulsion (sv)
  • 皮克林乳液 (zh)
rdfs:comment
  • La Emulsión Pickering (denominada también estabilización Pickering) es un fenómeno de estabilización de emulsiones descubierto por el químico británico en 1907.​ La idea de Pickering fue la de emplear partículas sólidas como agentes surfactantes.​ La emulsión Pickering, mediante el uso de pequeñas partículas, posee un efecto final de estabilización de emulsiones.​ (es)
  • ラムスデン現象(ラムスデンげんしょう、Ramsden phenomenon)は、牛乳を電子レンジや鍋で温めることにより表面に膜が張る現象である。これは成分中のタンパク質(β-ラクトグロブリン)と脂肪が表面近くの水分の蒸発により熱変性することによって起こる。牛乳ではなく豆乳でできる膜はゆばと呼ぶ。なお、β-ラクトグロブリンはホエータンパク質(乳清タンパク質)の一種でありカゼインとは異なる。 (ja)
  • 皮克林乳液(英語:Pickering emulsion)是由吸附到两相界面的固体微粒(如胶体SiO2)稳定的乳浊液。该现象于1903年由Walter Ramsden首先发现,S.U. Pickering在1907年进一步描述了该现象。如果油和水混合,则小油滴形成并分散于水,最终液滴聚并以降低能量。但是,如果固体粒子被加入到混合物,它们将被结合到界面的表面而防止液滴聚并,从而使乳浊液稳定。 与传统表面活性剂稳定的乳液相比,皮克林乳液具有一定的优势: 1. * 可以大大降低乳化剂的用量; 2. * 对人体的毒害远小于表面活性剂; 3. * 对环境友好; 4. * 乳液稳定性强,不易受体系pH值、盐浓度、温度及油相组成等因素的影响。 因此,固体颗粒稳定的乳液在食品、化妆品、医药等领域均有着重要的应用价值。 近年来,基于密封Pickering稳定的乳胶粒子而形成可渗透的壳, 从而得到了一种新型的胶囊粒子,称作colloidosome(译作胶体体)。 (zh)
  • A Pickering emulsion is an emulsion that is stabilized by solid particles (for example colloidal silica) which adsorb onto the interface between the water and oil phases. Typically, the emulsions are either water-in-oil or oil-in-water emulsions, but other more complex systems such as water-in-water, oil-in-oil, water-in-oil-in-water, and oil-in-water-in-oil also do exist. Pickering emulsions were named after S.U. Pickering, who described the phenomenon in 1907, although the effect was first recognized by Walter Ramsden in 1903. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • La Emulsión Pickering (denominada también estabilización Pickering) es un fenómeno de estabilización de emulsiones descubierto por el químico británico en 1907.​ La idea de Pickering fue la de emplear partículas sólidas como agentes surfactantes.​ La emulsión Pickering, mediante el uso de pequeñas partículas, posee un efecto final de estabilización de emulsiones.​ (es)
  • A Pickering emulsion is an emulsion that is stabilized by solid particles (for example colloidal silica) which adsorb onto the interface between the water and oil phases. Typically, the emulsions are either water-in-oil or oil-in-water emulsions, but other more complex systems such as water-in-water, oil-in-oil, water-in-oil-in-water, and oil-in-water-in-oil also do exist. Pickering emulsions were named after S.U. Pickering, who described the phenomenon in 1907, although the effect was first recognized by Walter Ramsden in 1903. If oil and water are mixed and small oil droplets are formed and dispersed throughout the water (oil-in-water emulsion), eventually the droplets will coalesce to decrease the amount of energy in the system. However, if solid particles are added to the mixture, they will bind to the surface of the interface and prevent the droplets from coalescing, making the emulsion more stable. Particle properties such as hydrophobicity, shape, and size, as well as the electrolyte concentration of the continuous phase and the volume ratio of the two phases can have an effect on the stability of the emulsion. The particle’s contact angle to the surface of the droplet is a characteristic of the hydrophobicity of the particle. If the contact angle of the particle to the interface is low, the particle will be mostly wetted by the droplet and therefore will not be likely to prevent coalescence of the droplets. Particles that are partially hydrophobic are better stabilizers because they are partially wettable by both liquids and therefore bind better to the surface of the droplets. The optimal contact angle for a stable emulsion is achieved when the particle is equally wetted by the two phases (i.e. 90° contact angle). The stabilization energy is given by where r is the particle radius, is the interfacial tension, and is the contact angle of the particle with the interface. When the contact angle is approximately 90°, the energy required to stabilize the system is at its minimum.Generally, the phase that preferentially wets the particle will be the continuous phase in the emulsion system. The most common type of Pickering emulsions are oil-in-water emulsions due to the hydrophilicity of most organic particles. One example of a Pickering-stabilized emulsion is homogenized milk. The milk protein (casein) units are adsorbed at the surface of the milk fat globules and act as surfactants. The casein replaces the milkfat globule membrane, which is damaged during homogenization. Other examples of emulsions where Pickering particles may be the stabilizing species are for example detergents, low-fat chocolates, mayonnaises and margarines. Pickering emulsions have gained increased attention and research interest during the last 20 years when the use of traditional surfactants was questioned due to environmental, health and cost issues. Synthetic nanoparticles as Pickering emulsion stabilizers with well-defined sizes and compositions have been the primarily particles of interest until recently when also natural organic particles have gained increased attention. They are believed to have advantages such as cost-efficiency and degradability, and are issued from renewable resources. Additionally, it has been demonstrated that the stability of the Pickering emulsions can be improved by the use of amphiphilic "Janus particles", namely particles that have one hydrophobic and one hydrophilic side, due to the higher adsorption energy of the particles at the liquid-liquid interface. This is evident when observing emulsion stabilization using polyelectrolytes. It is also possible to use latex particles for Pickering stabilization and then fuse these particles to form a permeable shell or capsule, called a colloidosome. Moreover, Pickering emulsion droplets are also suitable templates for micro-encapsulation and the formation of closed, non-permeable capsules. This form of encapsulation can also be applied to water-in-water emulsions (dispersions of phase-separated aqueous polymer solutions), and can also be reversible. (en)
  • ラムスデン現象(ラムスデンげんしょう、Ramsden phenomenon)は、牛乳を電子レンジや鍋で温めることにより表面に膜が張る現象である。これは成分中のタンパク質(β-ラクトグロブリン)と脂肪が表面近くの水分の蒸発により熱変性することによって起こる。牛乳ではなく豆乳でできる膜はゆばと呼ぶ。なお、β-ラクトグロブリンはホエータンパク質(乳清タンパク質)の一種でありカゼインとは異なる。 (ja)
  • 皮克林乳液(英語:Pickering emulsion)是由吸附到两相界面的固体微粒(如胶体SiO2)稳定的乳浊液。该现象于1903年由Walter Ramsden首先发现,S.U. Pickering在1907年进一步描述了该现象。如果油和水混合,则小油滴形成并分散于水,最终液滴聚并以降低能量。但是,如果固体粒子被加入到混合物,它们将被结合到界面的表面而防止液滴聚并,从而使乳浊液稳定。 与传统表面活性剂稳定的乳液相比,皮克林乳液具有一定的优势: 1. * 可以大大降低乳化剂的用量; 2. * 对人体的毒害远小于表面活性剂; 3. * 对环境友好; 4. * 乳液稳定性强,不易受体系pH值、盐浓度、温度及油相组成等因素的影响。 因此,固体颗粒稳定的乳液在食品、化妆品、医药等领域均有着重要的应用价值。 近年来,基于密封Pickering稳定的乳胶粒子而形成可渗透的壳, 从而得到了一种新型的胶囊粒子,称作colloidosome(译作胶体体)。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software