About: Polynomial chaos     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:StochasticProcess113561896, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPolynomial_chaos&invfp=IFP_OFF&sas=SAME_AS_OFF&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

Polynomial chaos (PC), also called polynomial chaos expansion (PCE) and Wiener chaos expansion, is a method for representing a random variable in terms of a polynomial function of other random variables. The polynomials are chosen to be orthogonal with respect to the joint probability distribution of these random variables. PCE can be used, e.g., to determine the evolution of uncertainty in a dynamical system when there is probabilistic uncertainty in the system parameters. Note that despite its name, PCE has no immediate connections to chaos theory.

AttributesValues
rdf:type
rdfs:label
  • Polynomial chaos (en)
rdfs:comment
  • Polynomial chaos (PC), also called polynomial chaos expansion (PCE) and Wiener chaos expansion, is a method for representing a random variable in terms of a polynomial function of other random variables. The polynomials are chosen to be orthogonal with respect to the joint probability distribution of these random variables. PCE can be used, e.g., to determine the evolution of uncertainty in a dynamical system when there is probabilistic uncertainty in the system parameters. Note that despite its name, PCE has no immediate connections to chaos theory. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Polynomial chaos (PC), also called polynomial chaos expansion (PCE) and Wiener chaos expansion, is a method for representing a random variable in terms of a polynomial function of other random variables. The polynomials are chosen to be orthogonal with respect to the joint probability distribution of these random variables. PCE can be used, e.g., to determine the evolution of uncertainty in a dynamical system when there is probabilistic uncertainty in the system parameters. Note that despite its name, PCE has no immediate connections to chaos theory. PCE was first introduced in 1938 by Norbert Wiener using Hermite polynomials to model stochastic processes with Gaussian random variables. It was introduced to the physics and engineering community by R. Ghanem and P. D. Spanos in 1991 and generalized to other orthogonal polynomial families by D. Xiu and G. E. Karniadakis in 2002. Mathematically rigorous proofs of existence and convergence of generalized PCE were given by O. G. Ernst and coworkers in 2012. PCE has found widespread use in engineering and the applied sciences because it makes it possible to efficiently deal with probabilistic uncertainty in the parameters of a system. It is widely used in stochastic finite element analysis and as a surrogate model to facilitate uncertainty quantification analyses. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software