About: Additive category     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatAdditiveCategories, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2wYyMQXNVK

In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts.

AttributesValues
rdf:type
rdfs:label
  • Additive category (en)
  • Catégorie additive (fr)
  • Аддитивная категория (ru)
  • 可加範疇 (zh)
rdfs:comment
  • In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts. (en)
  • 在範疇論中,一個可加範疇是一個存在有限雙積的預加法範疇。舊文獻所謂的「可加範疇」有時指預可加範疇,在當代理論中則傾向於區別兩者。 一如預可加範疇,對一交換環也能定義-可加範疇,可加範疇是的情形。 (zh)
  • Les catégories additives jouent un rôle essentiel en théorie des catégories. De très nombreuses catégories rencontrées en pratique sont en effet additives. Toute catégorie abélienne (telle que la catégorie des groupes abéliens, ou celle des modules à gauche sur un anneau, ou encore celle des faisceaux de modules sur un espace localement annelé) est additive. Néanmoins, dès qu'on munit d'une topologie des objets appartenant à une catégorie abélienne, et qu'on exige des morphismes qu'ils soient des applications continues, on obtient une catégorie qui n'est généralement plus abélienne, mais qui est souvent additive. Par exemple, la catégorie des espaces vectoriels sur le corps des réels ou des complexes et des applications linéaires est abélienne, en revanche la catégorie des espaces de Banac (fr)
  • Аддитивная категория — предаддитивная категория C, в которой для любого конечного множества объектов A1, … , An существует произведение A1 × ⋯ × An в C, в том числе произведение пустого множества объектов — нулевой объект. Основной пример аддитивной категории — категория абелевых групп Ab, нулевой объект в ней — тривиальная группа, сложение морфизмов задаётся поточечно и произведения задаются прямым произведением. Более общий пример — любая категория модулей над кольцом R аддитивна, в частности, категория векторных пространств над полем K. (ru)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts. (en)
  • Les catégories additives jouent un rôle essentiel en théorie des catégories. De très nombreuses catégories rencontrées en pratique sont en effet additives. Toute catégorie abélienne (telle que la catégorie des groupes abéliens, ou celle des modules à gauche sur un anneau, ou encore celle des faisceaux de modules sur un espace localement annelé) est additive. Néanmoins, dès qu'on munit d'une topologie des objets appartenant à une catégorie abélienne, et qu'on exige des morphismes qu'ils soient des applications continues, on obtient une catégorie qui n'est généralement plus abélienne, mais qui est souvent additive. Par exemple, la catégorie des espaces vectoriels sur le corps des réels ou des complexes et des applications linéaires est abélienne, en revanche la catégorie des espaces de Banach, celle des espaces de Fréchet, ou encore celle des espaces vectoriels topologiques sur le corps des réels ou des complexes et des applications linéaires continues, est additive mais n'est pas abélienne. On notera que pour qu'une catégorie soit additive, il est nécessaire que chacun de ses objets soit muni d'une structure de groupe abélien ; ainsi par exemple, la catégorie des ensembles, celle des groupes ou celle des espaces topologiques, n'est pas additive. (fr)
  • Аддитивная категория — предаддитивная категория C, в которой для любого конечного множества объектов A1, … , An существует произведение A1 × ⋯ × An в C, в том числе произведение пустого множества объектов — нулевой объект. Основной пример аддитивной категории — категория абелевых групп Ab, нулевой объект в ней — тривиальная группа, сложение морфизмов задаётся поточечно и произведения задаются прямым произведением. Более общий пример — любая категория модулей над кольцом R аддитивна, в частности, категория векторных пространств над полем K. Каждая абелева категория по определению аддитивна. Примерами аддитивных неабелевых категорий могут служить категория топологич. модулей над заданным топологич. кольцом относительно морфизмов, являющихся непрерывными линейными отображениями, а также категория абелевых групп Г с фильтрацией Г = Г0 ⊃ Г1 ⊃... ⊃ Гn - {0} относительно морфизмов, являющихся гомоморфизмами групп, сохраняющими фильтрацию. (ru)
  • 在範疇論中,一個可加範疇是一個存在有限雙積的預加法範疇。舊文獻所謂的「可加範疇」有時指預可加範疇,在當代理論中則傾向於區別兩者。 一如預可加範疇,對一交換環也能定義-可加範疇,可加範疇是的情形。 (zh)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software