In mathematics, an algebraic function field (often abbreviated as function field) of n variables over a field k is a finitely generated field extension K/k which has transcendence degree n over k. Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field K = k(x1,...,xn) of rational functions in n variables over k.
Attributes | Values |
---|
rdfs:label
| - Funktionenkörper (de)
- Algebraic function field (en)
- Corps de fonctions (fr)
- 代数函数体 (ja)
|
rdfs:comment
| - In mathematics, an algebraic function field (often abbreviated as function field) of n variables over a field k is a finitely generated field extension K/k which has transcendence degree n over k. Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field K = k(x1,...,xn) of rational functions in n variables over k. (en)
- (Algebraische) Funktionenkörper sind in der Mathematik algebraische Entsprechungen geometrischer Objekte. Funktionenkörper über endlichen Körpern spielen auch in der algebraischen Zahlentheorie eine wichtige Rolle. (de)
- 数学では、体 k 上の n 変数の代数函数体 (algebraic function field)(単に、函数体とも言う)は、k 上に超越次数 n を持つ有限生成な体の拡大 K/k である。同じことであるが、k 上の n 変数の代数函数体は、k 上の n 変数の有理函数の体 k(x1, ..., xn) の有限拡大として定義できる。 (ja)
- En mathématiques, un corps de fonctions est un corps commutatif F de type fini sur un corps de base K. On le note habituellement F/K, ou, si le contexte est clair, seulement F. De façon équivalente un corps de fonctions « à n variables » est une extension finie F d'un corps K(t1, … , tn) de fractions rationnelles à n indéterminées. F est alors de degré de transcendance n sur K. (fr)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, an algebraic function field (often abbreviated as function field) of n variables over a field k is a finitely generated field extension K/k which has transcendence degree n over k. Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field K = k(x1,...,xn) of rational functions in n variables over k. (en)
- (Algebraische) Funktionenkörper sind in der Mathematik algebraische Entsprechungen geometrischer Objekte. Funktionenkörper über endlichen Körpern spielen auch in der algebraischen Zahlentheorie eine wichtige Rolle. (de)
- En mathématiques, un corps de fonctions est un corps commutatif F de type fini sur un corps de base K. On le note habituellement F/K, ou, si le contexte est clair, seulement F. De façon équivalente un corps de fonctions « à n variables » est une extension finie F d'un corps K(t1, … , tn) de fractions rationnelles à n indéterminées. F est alors de degré de transcendance n sur K.
* Une extension L de k est un corps de fonctions (à n variables) si et seulement si c'est le (en) d'une variété algébrique intègre sur k (de dimension n).
* Un corps de fonctions à une variable sur un corps fini est un corps global de caractéristique positive. C'est le corps des fonctions rationnelles d'une courbe projective lisse intègre sur un corps fini. (fr)
- 数学では、体 k 上の n 変数の代数函数体 (algebraic function field)(単に、函数体とも言う)は、k 上に超越次数 n を持つ有限生成な体の拡大 K/k である。同じことであるが、k 上の n 変数の代数函数体は、k 上の n 変数の有理函数の体 k(x1, ..., xn) の有限拡大として定義できる。 (ja)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |