In mathematics, the theory of fiber bundles with a structure group (a topological group) allows an operation of creating an associated bundle, in which the typical fiber of a bundle changes from to , which are both topological spaces with a group action of . For a fiber bundle F with structure group G, the transition functions of the fiber (i.e., the ) in an overlap of two coordinate systems Uα and Uβ are given as a G-valued function gαβ on Uα∩Uβ. One may then construct a fiber bundle F′ as a new fiber bundle having the same transition functions, but possibly a different fiber.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Associated bundle (en)
- Fibrado asociado (es)
- Fibré associé (fr)
- 연관 다발 (ko)
- 配丛 (zh)
|
rdfs:comment
| - In mathematics, the theory of fiber bundles with a structure group (a topological group) allows an operation of creating an associated bundle, in which the typical fiber of a bundle changes from to , which are both topological spaces with a group action of . For a fiber bundle F with structure group G, the transition functions of the fiber (i.e., the ) in an overlap of two coordinate systems Uα and Uβ are given as a G-valued function gαβ on Uα∩Uβ. One may then construct a fiber bundle F′ as a new fiber bundle having the same transition functions, but possibly a different fiber. (en)
- En matemáticas, la teoría de los fibrados con un G (un grupo topológico) permite una operación de creación de un fibrado asociado, en el cual la fibra típica de un fibrado cambia de F1 a F2, que son ambos espacios topológicos con una acción de grupo de G. (es)
- En géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. (fr)
- 위상수학에서 연관 다발(聯關-, 영어: associated bundle)은 위상군의 작용을 갖는 위상 공간 및 같은 위상군에 대한 주다발로부터 구성되는, 전자를 올로 갖는 올다발이다. (ko)
- 在数学中,带有结构群 G(拓扑群)的纤维丛理论允许产生一个配丛(associated bundle)的操作,将丛的典型纤维由 F1 变成 F2,两者都是具有群 G 作用的拓扑空间。对具有结构群 G 的纤维丛 F,纤维在两个局部坐标系 Uα 与 Uβ 交集上的转移函数(即上链)由一个 Uα∩Uβ 上 G-值函数 gαβ 给出。我们可以构造一个纤维丛 F′ 有同样的转移函数,但可能具有不同的纤维。 (zh)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, the theory of fiber bundles with a structure group (a topological group) allows an operation of creating an associated bundle, in which the typical fiber of a bundle changes from to , which are both topological spaces with a group action of . For a fiber bundle F with structure group G, the transition functions of the fiber (i.e., the ) in an overlap of two coordinate systems Uα and Uβ are given as a G-valued function gαβ on Uα∩Uβ. One may then construct a fiber bundle F′ as a new fiber bundle having the same transition functions, but possibly a different fiber. (en)
- En matemáticas, la teoría de los fibrados con un G (un grupo topológico) permite una operación de creación de un fibrado asociado, en el cual la fibra típica de un fibrado cambia de F1 a F2, que son ambos espacios topológicos con una acción de grupo de G. (es)
- En géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. (fr)
- 위상수학에서 연관 다발(聯關-, 영어: associated bundle)은 위상군의 작용을 갖는 위상 공간 및 같은 위상군에 대한 주다발로부터 구성되는, 전자를 올로 갖는 올다발이다. (ko)
- 在数学中,带有结构群 G(拓扑群)的纤维丛理论允许产生一个配丛(associated bundle)的操作,将丛的典型纤维由 F1 变成 F2,两者都是具有群 G 作用的拓扑空间。对具有结构群 G 的纤维丛 F,纤维在两个局部坐标系 Uα 与 Uβ 交集上的转移函数(即上链)由一个 Uα∩Uβ 上 G-值函数 gαβ 给出。我们可以构造一个纤维丛 F′ 有同样的转移函数,但可能具有不同的纤维。 (zh)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |