About: Balaban 10-cage     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatRegularGraphs, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5MyyPC6u8Q

In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. Published in 1972, It was the first 10-cage discovered but it is not unique. The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries–Wong graph. Moreover, the Harries–Wong graph and Harries graph are cospectral graphs. The characteristic polynomial of the Balaban 10-cage is

AttributesValues
rdf:type
rdfs:label
  • Balaban 10-cage (en)
  • 10-jaula de Balaban (es)
  • 10-cage de Balaban (fr)
  • 10-клетка Балабана (ru)
rdfs:comment
  • En el campo matemático de la teoría de grafos, la 10-jaula de Balaban o (3-10)-jaula de Balaban es un 3-grafo regular con 70 vértices y 105 aristas nombrado en honor de .​ Publicada en 1972,​ Fue la primera (3-10)-jaula descubierta pero no es la única.​ La lista completa de (3-10)-jaulas y la prueba de minimalidad fue dada por O'Keefe y Wong.​ Existen 3 (3-10)-jaulas distintas, las otras dos son el y el .​ La 10-jaula de Balaban tiene número cromático 2, índice cromático 3, diámetro 6, cintura 10 y es hamiltoniana. El polinomio característico de la 10-jaula de Balaban es : . (es)
  • La 10-cage de Balaban (ou (3,10)-cage de Balaban) est, en théorie des graphes, un graphe régulier possédant 70 sommets et 105 arêtes. Il porte le nom du mathématicien A. T. Balaban qui en a publié la description en 1972. (fr)
  • 10-Клетка Балабана или балабанова (3,10)-клетка — это 3-регулярный граф с 70 вершинами и 105 рёбрами, названный именем химика румынского происхождения . Опубликован в 1972. Это была первая обнаруженная (3,10)-клетка, но не единственная. (ru)
  • In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. Published in 1972, It was the first 10-cage discovered but it is not unique. The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries–Wong graph. Moreover, the Harries–Wong graph and Harries graph are cospectral graphs. The characteristic polynomial of the Balaban 10-cage is (en)
name
  • Balaban 10-cage (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Balaban_10-cage.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/balaban_10-cage_2COL.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/balaban_10-cage_3color_edge.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/balaban_10-cage_alternative_drawing.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
namesake
  • Alexandru T. Balaban (en)
automorphisms
chromatic index
chromatic number
diameter
edges
girth
image caption
  • The Balaban 10-cage (en)
properties
radius
vertices
has abstract
  • In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. Published in 1972, It was the first 10-cage discovered but it is not unique. The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries–Wong graph. Moreover, the Harries–Wong graph and Harries graph are cospectral graphs. The Balaban 10-cage has chromatic number 2, chromatic index 3, diameter 6, girth 10 and is hamiltonian. It is also a 3-vertex-connected graph and 3-edge-connected. The book thickness is 3 and the queue number is 2. The characteristic polynomial of the Balaban 10-cage is (en)
  • En el campo matemático de la teoría de grafos, la 10-jaula de Balaban o (3-10)-jaula de Balaban es un 3-grafo regular con 70 vértices y 105 aristas nombrado en honor de .​ Publicada en 1972,​ Fue la primera (3-10)-jaula descubierta pero no es la única.​ La lista completa de (3-10)-jaulas y la prueba de minimalidad fue dada por O'Keefe y Wong.​ Existen 3 (3-10)-jaulas distintas, las otras dos son el y el .​ La 10-jaula de Balaban tiene número cromático 2, índice cromático 3, diámetro 6, cintura 10 y es hamiltoniana. El polinomio característico de la 10-jaula de Balaban es : . (es)
  • La 10-cage de Balaban (ou (3,10)-cage de Balaban) est, en théorie des graphes, un graphe régulier possédant 70 sommets et 105 arêtes. Il porte le nom du mathématicien A. T. Balaban qui en a publié la description en 1972. (fr)
  • 10-Клетка Балабана или балабанова (3,10)-клетка — это 3-регулярный граф с 70 вершинами и 105 рёбрами, названный именем химика румынского происхождения . Опубликован в 1972. Это была первая обнаруженная (3,10)-клетка, но не единственная. (ru)
book thickness
queue number
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software