In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. Published in 1972, It was the first 10-cage discovered but it is not unique. The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries–Wong graph. Moreover, the Harries–Wong graph and Harries graph are cospectral graphs. The characteristic polynomial of the Balaban 10-cage is
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Balaban 10-cage (en)
- 10-jaula de Balaban (es)
- 10-cage de Balaban (fr)
- 10-клетка Балабана (ru)
|
rdfs:comment
| - En el campo matemático de la teoría de grafos, la 10-jaula de Balaban o (3-10)-jaula de Balaban es un 3-grafo regular con 70 vértices y 105 aristas nombrado en honor de . Publicada en 1972, Fue la primera (3-10)-jaula descubierta pero no es la única. La lista completa de (3-10)-jaulas y la prueba de minimalidad fue dada por O'Keefe y Wong. Existen 3 (3-10)-jaulas distintas, las otras dos son el y el . La 10-jaula de Balaban tiene número cromático 2, índice cromático 3, diámetro 6, cintura 10 y es hamiltoniana. El polinomio característico de la 10-jaula de Balaban es : . (es)
- La 10-cage de Balaban (ou (3,10)-cage de Balaban) est, en théorie des graphes, un graphe régulier possédant 70 sommets et 105 arêtes. Il porte le nom du mathématicien A. T. Balaban qui en a publié la description en 1972. (fr)
- 10-Клетка Балабана или балабанова (3,10)-клетка — это 3-регулярный граф с 70 вершинами и 105 рёбрами, названный именем химика румынского происхождения . Опубликован в 1972. Это была первая обнаруженная (3,10)-клетка, но не единственная. (ru)
- In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. Published in 1972, It was the first 10-cage discovered but it is not unique. The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries–Wong graph. Moreover, the Harries–Wong graph and Harries graph are cospectral graphs. The characteristic polynomial of the Balaban 10-cage is (en)
|
name
| |
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
namesake
| - Alexandru T. Balaban (en)
|
automorphisms
| |
chromatic index
| |
chromatic number
| |
diameter
| |
edges
| |
girth
| |
image caption
| |
properties
| |
radius
| |
vertices
| |
has abstract
| - In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. Published in 1972, It was the first 10-cage discovered but it is not unique. The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries–Wong graph. Moreover, the Harries–Wong graph and Harries graph are cospectral graphs. The Balaban 10-cage has chromatic number 2, chromatic index 3, diameter 6, girth 10 and is hamiltonian. It is also a 3-vertex-connected graph and 3-edge-connected. The book thickness is 3 and the queue number is 2. The characteristic polynomial of the Balaban 10-cage is (en)
- En el campo matemático de la teoría de grafos, la 10-jaula de Balaban o (3-10)-jaula de Balaban es un 3-grafo regular con 70 vértices y 105 aristas nombrado en honor de . Publicada en 1972, Fue la primera (3-10)-jaula descubierta pero no es la única. La lista completa de (3-10)-jaulas y la prueba de minimalidad fue dada por O'Keefe y Wong. Existen 3 (3-10)-jaulas distintas, las otras dos son el y el . La 10-jaula de Balaban tiene número cromático 2, índice cromático 3, diámetro 6, cintura 10 y es hamiltoniana. El polinomio característico de la 10-jaula de Balaban es : . (es)
- La 10-cage de Balaban (ou (3,10)-cage de Balaban) est, en théorie des graphes, un graphe régulier possédant 70 sommets et 105 arêtes. Il porte le nom du mathématicien A. T. Balaban qui en a publié la description en 1972. (fr)
- 10-Клетка Балабана или балабанова (3,10)-клетка — это 3-регулярный граф с 70 вершинами и 105 рёбрами, названный именем химика румынского происхождения . Опубликован в 1972. Это была первая обнаруженная (3,10)-клетка, но не единственная. (ru)
|
book thickness
| |
queue number
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |