rdfs:comment
| - Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. (en)
- Модель бає́сового структу́рного часово́го ря́ду (БСЧР, англ. bayesian structural time series, BSTS) — це методика машинного навчання, що її застосовують для обирання ознак, передбачування часових рядів, , з'ясовування причинного впливу та інших застосувань. Цю модель розроблено для роботи з даними часових рядів. (uk)
|
has abstract
| - Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used in order to assess how much different marketing campaigns have contributed to the change in web search volumes, product sales, brand popularity and other relevant indicators. Difference-in-differences models and interrupted time series designs are alternatives to this approach. "In contrast to classical difference-in-differences schemes, state-space models make it possible to (i) infer the temporal evolution of attributable impact, (ii) incorporate empirical priors on the parameters in a fully Bayesian treatment, and (iii) flexibly accommodate multiple sources of variation, including the time-varying influence of contemporaneous covariates, i.e., synthetic controls." (en)
- Модель бає́сового структу́рного часово́го ря́ду (БСЧР, англ. bayesian structural time series, BSTS) — це методика машинного навчання, що її застосовують для обирання ознак, передбачування часових рядів, , з'ясовування причинного впливу та інших застосувань. Цю модель розроблено для роботи з даними часових рядів. Ця модель також має обнадійливе застосування в галузі аналітичного маркетингу. Зокрема, її можливо застосовувати для оцінювання внеску різних маркетингових кампаній до зміни в об'ємах вебпошуку, продажах продукту, популярності бренду та інших доречних індикаторах (звичним альтернативним підходом в цьому випадку є модель ). «На противагу до класичних схем різниці-в-різницях, станово-просторові моделі уможливлюють (i) висновування про розгортання приписуваного впливу в часі, (ii) включення емпіричних апріорних до параметрів у повністю баєсовому трактуванні, та (iii) гнучке пристосовування численних джерел мінливості, включно зі змінюваним у часі впливом одночасних коваріат, наприклад, штучних керувань.» (uk)
|