In measure theory, Carathéodory's extension theorem (named after the mathematician Constantin Carathéodory) states that any pre-measure defined on a given ring R of subsets of a given set Ω can be extended to a measure on the σ-algebra generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Maßerweiterungssatz von Carathéodory (de)
- Carathéodory's extension theorem (en)
- Théorème d'extension de Carathéodory (fr)
- カラテオドリの拡張定理 (ja)
- 카라테오도리 확장 정리 (ko)
- Теорема Каратеодори о продолжении меры (ru)
- Теорема Каратеодорі про продовження міри (uk)
|
rdfs:comment
| - Der Maßerweiterungssatz von Carathéodory, englisch Carathéodory’s extension theorem, oder auch Satz von Carathéodory über Fortsetzung von Maßen, ist ein Satz aus dem mathematischen Teilgebiet der Maßtheorie. Dieser Satz dient dazu, Prämaße, die auf Mengenringen definiert sind, zu Maßen auf σ-Algebren fortzusetzen. Mit dieser auf Constantin Carathéodory zurückgehenden Methode kann insbesondere das Lebesguemaß auf die Längenbestimmung von Intervallen zurückgeführt werden. (de)
- En théorie de la mesure, le théorème d'extension de Carathéodory est un théorème fondamental, qui est à la base de la construction de la plupart des mesures usuelles. Constitué par généralisation à un cadre abstrait des idées fondant la construction de la mesure de Lebesgue, et exposé sous diverses variantes, il est également mentionné par certains auteurs sous les noms de théorème de Carathéodory-Hahn ou théorème de Hahn-Kolmogorov (certaines sources distinguent un théorème de Carathéodory qui est l'énoncé d'existence, et un théorème de Hahn qui est l'énoncé d'unicité). (fr)
- 数学の測度論におけるカラテオドリの拡張定理(カラテオドリのかくちょうていり、英: Carathéodory's extension theorem)は「与えられた集合 Ω の部分集合族である集合環 R 上定義される任意の は、R が生成する完全加法族上の測度へと一意に拡張できる」ということを述べた定理である。この定理の帰結として、実数からなる区間すべてを含む空間上で定義された任意の測度は、実数全体の成す集合 R 上のボレル集合族上の測度へと拡張することができる。これは測度論における非常に強力な結果であり、例えば、ルベーグ測度の存在の証明にも使用された。 (ja)
- 측도론에서 카라테오도리 확장 정리(Carathéodory擴張定理, 영어: Carathéodory’s extension theorem) 또는 한-콜모고로프 정리(Hahn-Колмого́ров定理, 영어: Hahn–Kolmogorov theorem)는 완비 측도를 특수한 부분 집합의 측도 값들로부터 구성하는 정리이다. (ko)
- В теорії міри теорема Каратеодорі твердить, що довільну (зліченно-адитивну) міру на деякому кільці підмножин множини можна продовжити на σ-кільце, породжене кільцем . У випадку σ-скінченності міри таке продовження є єдиним. З теореми зокрема випливає існування і єдиність міри Бореля і міри Лебега. (uk)
- В теории меры теорема Каратеодори утверждает, что произвольная счётно-аддитивная мера на некотором кольце подмножеств множества может быть продолжена на σ-кольцо, порождённое кольцом . В случае σ-конечности меры такое продолжение является единственным. Из теоремы, в частности, вытекает существование и единственность меры Бореля и меры Лебега. (ru)
- In measure theory, Carathéodory's extension theorem (named after the mathematician Constantin Carathéodory) states that any pre-measure defined on a given ring R of subsets of a given set Ω can be extended to a measure on the σ-algebra generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure. (en)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
id
| |
title
| - Hahn–Kolmogorov theorem (en)
|
has abstract
| - Der Maßerweiterungssatz von Carathéodory, englisch Carathéodory’s extension theorem, oder auch Satz von Carathéodory über Fortsetzung von Maßen, ist ein Satz aus dem mathematischen Teilgebiet der Maßtheorie. Dieser Satz dient dazu, Prämaße, die auf Mengenringen definiert sind, zu Maßen auf σ-Algebren fortzusetzen. Mit dieser auf Constantin Carathéodory zurückgehenden Methode kann insbesondere das Lebesguemaß auf die Längenbestimmung von Intervallen zurückgeführt werden. (de)
- In measure theory, Carathéodory's extension theorem (named after the mathematician Constantin Carathéodory) states that any pre-measure defined on a given ring R of subsets of a given set Ω can be extended to a measure on the σ-algebra generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure. The theorem is also sometimes known as the Carathéodory-Fréchet extension theorem, the Carathéodory–Hopf extension theorem, the Hopf extension theorem and the Hahn–Kolmogorov extension theorem. (en)
- En théorie de la mesure, le théorème d'extension de Carathéodory est un théorème fondamental, qui est à la base de la construction de la plupart des mesures usuelles. Constitué par généralisation à un cadre abstrait des idées fondant la construction de la mesure de Lebesgue, et exposé sous diverses variantes, il est également mentionné par certains auteurs sous les noms de théorème de Carathéodory-Hahn ou théorème de Hahn-Kolmogorov (certaines sources distinguent un théorème de Carathéodory qui est l'énoncé d'existence, et un théorème de Hahn qui est l'énoncé d'unicité). (fr)
- 数学の測度論におけるカラテオドリの拡張定理(カラテオドリのかくちょうていり、英: Carathéodory's extension theorem)は「与えられた集合 Ω の部分集合族である集合環 R 上定義される任意の は、R が生成する完全加法族上の測度へと一意に拡張できる」ということを述べた定理である。この定理の帰結として、実数からなる区間すべてを含む空間上で定義された任意の測度は、実数全体の成す集合 R 上のボレル集合族上の測度へと拡張することができる。これは測度論における非常に強力な結果であり、例えば、ルベーグ測度の存在の証明にも使用された。 (ja)
- 측도론에서 카라테오도리 확장 정리(Carathéodory擴張定理, 영어: Carathéodory’s extension theorem) 또는 한-콜모고로프 정리(Hahn-Колмого́ров定理, 영어: Hahn–Kolmogorov theorem)는 완비 측도를 특수한 부분 집합의 측도 값들로부터 구성하는 정리이다. (ko)
- В теорії міри теорема Каратеодорі твердить, що довільну (зліченно-адитивну) міру на деякому кільці підмножин множини можна продовжити на σ-кільце, породжене кільцем . У випадку σ-скінченності міри таке продовження є єдиним. З теореми зокрема випливає існування і єдиність міри Бореля і міри Лебега. (uk)
- В теории меры теорема Каратеодори утверждает, что произвольная счётно-аддитивная мера на некотором кольце подмножеств множества может быть продолжена на σ-кольцо, порождённое кольцом . В случае σ-конечности меры такое продолжение является единственным. Из теоремы, в частности, вытекает существование и единственность меры Бореля и меры Лебега. (ru)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is rdfs:seeAlso
of | |
is Link from a Wikipage to another Wikipage
of | |