Carleson's theorem is a fundamental result in mathematical analysis establishing the pointwise (Lebesgue) almost everywhere convergence of Fourier series of L2 functions, proved by Lennart Carleson. The name is also often used to refer to the extension of the result by Richard Hunt to Lp functions for p ∈ (1, ∞] (also known as the Carleson–Hunt theorem) and the analogous results for pointwise almost everywhere convergence of Fourier integrals, which can be shown to be equivalent by transference methods.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Satz von Carleson und Hunt (de)
- Carleson's theorem (en)
- Teorema de Carleson (es)
- Théorème de Carleson (fr)
- 칼레손의 정리 (ko)
|
rdfs:comment
| - In der Mathematik ist der Satz von Carleson und Hunt ein Lehrsatz über die punktweise Konvergenz von Fourier-Reihen. Er ist die Verallgemeinerung des vormals als Vermutung von Lusin bekannten Satzes von Carleson und ist nach Lennart Carleson und Richard Allen Hunt benannt. (de)
- Carleson's theorem is a fundamental result in mathematical analysis establishing the pointwise (Lebesgue) almost everywhere convergence of Fourier series of L2 functions, proved by Lennart Carleson. The name is also often used to refer to the extension of the result by Richard Hunt to Lp functions for p ∈ (1, ∞] (also known as the Carleson–Hunt theorem) and the analogous results for pointwise almost everywhere convergence of Fourier integrals, which can be shown to be equivalent by transference methods. (en)
- Le théorème de Carleson est un résultat fondamental de l'analyse mathématique établissant la convergence ponctuelle presque partout de la série de Fourier des fonctions L2, c'est-à-dire de carré intégrable. Il a été prouvé par Lennart Carleson en 1966. Ce nom est également souvent utilisé pour se référer à l'extension du résultat proposée par Richard Hunt en 1968, aux fonctions Lp pour p ∈ ]1, +∞[ (connu sous le nom de Théorème de Carleson–Hunt) et aux résultats analogues de convergence ponctuelle presque partout des intégrales de Fourier, ce qui peut être démontré comme étant équivalent. (fr)
- El Teorema de Carleson es un resultado fundamental en análisis matemático para establecer (según la medida de Lebesgue) la convergencia en casi cualquier punto de las series de Fourier, por funciones L2. El nombre se utiliza a menudo para referirse a la extensión del resultado a las funciones de Lp de p ∈ (1, ∞) (también conocido como el teorema de Carleson-Hunt) y los resultados análogos para la convergencia en casi cualquier punto de las integrales de Fourier, que se puede demostrar de forma equivalente por métodos de transferencia. (es)
- 칼레손의 정리(영어: Carleson's theorem)는 L² 함수의 푸리에 급수가 거의 모든 곳에서 원래 함수로 수렴한다는 중요한 정리이다. 스웨덴 수학자 렌나르트 칼레손이 1966년에 증명하였다. 1968년에 미국 수학자 리처드 헌트는 이를 확장하여 p ∈ (1, ∞)일 때 Lp 함수에 대해서도 마찬가지임을 보였다. 때문에 이 결과를 칼레손-헌트 정리(영어: Carleson-Hunt theorem)라고도 부른다. 푸리에 변환에 대해서도 비슷한 결과가 성립한다. (ko)
|
differentFrom
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
authorlink
| - Richard Hunt (en)
- Charles Fefferman (en)
- Lennart Carleson (en)
- Nikolai Nikolaevich Luzin (en)
|
em
| |
first
| - Charles (en)
- Michael (en)
- Richard (en)
- Christoph (en)
- S.A. (en)
- Lennart (en)
- N. N. (en)
|
last
| - Hunt (en)
- Lacey (en)
- Thiele (en)
- Carleson (en)
- Fefferman (en)
- Luzin (en)
- Telyakovskii (en)
|
text
| - Let be an periodic function for some , with Fourier coefficients . Then for almost every . (en)
- Let for some have Fourier transform . Then for almost every . (en)
|