rdfs:comment
| - في الرياضيات، تصنيف الزمر المنتهية البسيطة (بالإنجليزية: Classification of finite simple groups) هو نظرية تقرر أن كل زمرة منتهية بسيطة تنتمي إلى واحدة من الفئات الأربع المذكورة أدناه. يمكن اعتبار هذه الـزمر حجر الأساس لكل الزمر المنتهية، تمامًا مثلما تُعد الأعداد الأولية حجر الأساس للأعداد الطبيعية. إن هي طريقة دقيقة لإقرار هذه الحقيقة عن الزمر المنتهية. يحتوي البرهان على النظرية على عشرات الآلاف من الصفحات في مئات من مقالات الصحف لمئات المؤلفين، ونُشرت غالبًا بين عامي 1955 و2004. ويقوم كلٌ من غورينشتاين (ت 1922) ، وسولومون بنشر نسخة مبسطة ومنقحة من الدليل بصورة تدريجية. (ar)
- Klasifikace jednoduchých konečných grup je matematické tvrzení. Říká, že každá jednoduchá grupa, která má konečný počet prvků, je izomorfní buď jedné z 18 sérií grup, anebo jedné z 26 . Všechny tyto grupy jsou explicitně popsány a věta o klasifikaci tvrdí, že žádná jiná konečná jednoduchá grupa neexistuje. Kvůli ohromné náročnosti jejího důkazu bývá v angličtině také nazývána „Enormous theorem“. (cs)
- En mathématiques, et plus précisément en théorie des groupes, la classification des groupes simples finis, aussi appelée le théorème énorme, est un ensemble de travaux, principalement publiés entre environ 1955 et 1983, qui a pour but de classer tous les groupes finis simples. En tout, cet ensemble comprend des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs. (fr)
- 有限単純群の分類 (classification of the finite simple groups) とは、数学において全ての有限単純群を4つの大まかなクラスへと分類する定理である。これらの群は、全ての有限群を構成する基本的な要素として見ることが出来る。 この分類定理の証明は、主に1955年から2004年にわたり出版された、100以上の著者により数百の学術誌において書かれた、計1万5000ページ以上もの成果の集大成である。ダニエル・ゴーレンシュタイン (d.1992) と、らは、この証明を整理し見通しよく改訂した「第2世代の証明」の出版を開始している。 (ja)
- Klasyfikacja skończonych grup prostych jest olbrzymim twierdzeniem z teorii grup, składającym się z ponad 500 artykułów zawierających w sumie ponad 10 000 stron, napisanych przez ponad 100 autorów. W większości artykuły te powstały pomiędzy 1955 a 1983 rokiem. Twierdzenie to klasyfikuje wszystkie istniejące skończone grupy proste. (pl)
- 有限單群的分類是代數學中的一项巨大工程。有關的文章大多發表於1955年至2004年之間,目的在於將所有的有限簡單群都給清楚地分類。這項工程總計約有100位作者在500篇期刊文章中寫下了上萬頁的文字。 (zh)
- En el camp matemàtic de la teoria de grups, el teorema de classificació de grups simples finits es va dissenyar per classificar tots els grups simples finits. Aquests grups es poden veure com els blocs que construeixen tots els grups finits, de la mateixa manera que els nombres primers construeixen els nombres naturals. El teorema de Jordan-Hölder és la manera més precisa d'establir aquest fet sobre els grups finits. (ca)
- Στα μαθηματικά, η κατάταξη των πεπερασμένων απλών ομάδων είναι ένα θεώρημα που αναφέρει ότι κάθε πεπερασμένη απλή ομάδα ανήκει σε μία από τις τέσσερις κατηγορίες που περιγράφονται παρακάτω. Αυτές οι ομάδες μπορούν να θεωρηθούν ως τα βασικά δομικά στοιχεία όλων των , με έναν τρόπο που θυμίζει το πως οι πρώτοι αριθμοί είναι τα βασικά δομικά στοιχεία των φυσικών αριθμών. Το είναι ένας πιο ακριβής τρόπος για να δηλώσουμε το γεγονός αυτό των πεπερασμένων ομάδων. Ωστόσο, μια σημαντική διαφορά όσον αφορά την περίπτωση της είναι ότι τέτοια "δομικά στοιχεία" δεν καθορίζουν απαραίτητα μια ομάδα μοναδικά, δεδομένου ότι μπορεί να υπάρχουν πολλές ομάδες με την ίδια σύνθεση ή, να το πούμε αλλιώς, το επεκταμένο πρόβλημα δεν έχει μοναδική λύση. (el)
- In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Gorenstein (d.1992), Lyons, and Solomon are gradually publishing a simplified and revised version of the proof. (en)
- En matemáticas, la clasificación de los grupos simples finitos es un teorema que establece que cada es cíclico o alternante, o pertenece a una amplia clase infinita llamada , o bien es una de veintiséis o veintisiete excepciones, llamadas grupos esporádicos. La teoría de grupos es fundamental para muchas áreas de las matemáticas puras y aplicadas y el teorema de clasificación ha sido calificado como uno de los grandes logros intelectuales de la humanidad. Las demostraciones que sustentan esta clasificación constan de decenas de miles de páginas en varios cientos de artículos de revistas escritos por unos 100 autores, publicados principalmente entre 1955 y 2004. (es)
- Dalam matematika, klasifikasi hingga grup sederhana adalah teorema yang menyatakan bahwa setiap adalah siklik, atau , atau itu milik kelas luas tak terbatas yang disebut , atau yang lain itu adalah salah satu dari dua puluh enam atau dua puluh tujuh pengecualian, yang disebut . Teori grup adalah pusat dari banyak bidang matematika murni dan terapan dan teorema klasifikasi telah disebut sebagai salah satu pencapaian intelektual terbesar umat manusia. Buktinya terdiri dari puluhan ribu halaman dalam beberapa ratus artikel jurnal yang ditulis oleh sekitar 100 penulis, sebagian besar diterbitkan antara tahun 1955 dan 2004. (in)
- La classificazione dei gruppi finiti semplici, detta anche il teorema enorme, è un risultato che può essere considerato uno dei più significativi teoremi del Novecento, se non addirittura, come affermato dal matematico Daniel Gorenstein, uno dei più importanti risultati della matematica. I gruppi finiti semplici sono quelli che non contengono alcun sottogruppo normale proprio (che non possono essere scomposti in gruppi più piccoli); nella teoria dei gruppi finiti ricoprono un ruolo simile a quello dei numeri primi in aritmetica. (it)
- In de groepentheorie, een deelgebied van de wiskunde, gelooft men dat de classificatiestelling van de eindige enkelvoudige groepen, ook wel de enorme stelling genoemd, alle eindige enkelvoudige groepen classificeert. Deze groepen kunnen worden gezien als de basisbouwstenen van alle eindige groepen, op ongeveer dezelfde manier als de priemgetallen de elementaire bouwstenen zijn van de natuurlijke getallen. De is een meer precieze manier om dit feit over eindige groepen te stellen. (nl)
- Em matemática, a classificação dos grupos simples finitos é um teorema que estabelece que todo pertence a uma das quatro classes descritas mais adiante. Estes grupos podem ser vistos como os blocos básicos com os quais se constroem todos os grupos finitos, do mesmo modo com que se constroem os números naturais a partir dos números primos. O teorema de Jordan-Hölder é uma maneira mais precisa de descrever este fato acerca dos grupos finitos. No entanto, uma diferença significativa em relação à fatoração de inteiros é que os blocos não necessariamente determinam de forma única um grupo, já que podem existir vários grupos não isomorfos com a mesma ou, em outras palavras, o problema da extensão não tem uma solução única. (pt)
- Теорема о классификации простых конечных групп — теорема теории групп, классифицирующая с точностью до изоморфизма простые конечные группы. Простые конечные группы — «элементарные кирпичики», из которых можно построить любую конечную группу, так же, как любое натуральное число можно разложить в произведение простых. Теорема Жордана — Гёльдера является более точным способом выражения этого факта для конечных групп. Однако существенное отличие от факторизации целых чисел заключается в том, что такие «кирпичики» не будут определять группу однозначно, так как может существовать множество неизоморфных групп с теми же . (ru)
- У математиці класифікацією простих скінченних груп називають теорему, згідно з якою будь-яка скінченна проста група належить до одного з описаних нижче класів. Ці класи можна розглядати як елементарні будівельні блоки, з яких побудовані всі скінченні групи, таким же чином, як прості числа є «цеглинами», з яких побудовані всі натуральні числа. Теорема Жордана — Гьольдера є більш математично чітким виразом цього принципу. (uk)
|