rdfs:comment
| - In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, is abelian if and only if contains the commutator subgroup of . So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. (en)
- En matemáticas, el subgrupo conmutador de un grupo G, es el subgrupo generado por todos los elementos de la forma denominado conmutador de a con b. Al subgrupo conmutador también se le conoce como subgrupo derivado de G y se simboliza por o . Esto significa que si entonces x se escribe como una palabra de conmutadores esto es, . Se puede demostrar que [G,G] es un subgrupo normal y que el grupo cociente es abeliano. El subgrupo conmutador es el menor que verifica esa propiedad, es decir: si verifica que es abeliano entonces . La construcción recibe el nombre de de G. (es)
- En mathématiques, en algèbre dans un groupe G, le groupe dérivé, noté D(G) ou [G, G], est le plus petit sous-groupe normal pour lequel le groupe quotient G/[G, G] est abélien. Le groupe dérivé de G est trivial si et seulement si le groupe G est abélien. Le groupe quotient de G par son groupe dérivé est l'abélianisé de G. Le procédé d'abélianisation permet souvent de prouver que deux groupes ne sont pas isomorphes. Il intervient aussi en géométrie. (fr)
- Dalam matematika, lebih khusus lagi dalam aljabar abstrak, subgrup komutator atau subgrup turunan dari grup adalah oleh semua komutator grup. Subgrup komutator penting karena merupakan terkecil subgrup normal sedemikian rupa sehingga grup hasil bagi dari grup asli oleh subgrup ini adalah abelian. Dengan kata lain, adalah abelian jika dan hanya jika berisi subgrup komutator dari . Jadi dalam beberapa hal ini memberikan ukuran seberapa jauh grup tersebut dari menjadi abelian; semakin besar subgrup komutator, semakin "kurang abelian" grup tersebut. (in)
- 군론에서, 주어진 군의 교환자 부분군(交換子部分群, 영어: commutator subgroup)은 교환자들로 생성되는 부분군이다. (ko)
- Komutant – szczególna podgrupa danej grupy pomocna przy badaniu jej przemienności. (pl)
- 数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、英: commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、英: derived subgroup)とは、交換子全体が生成する部分群である。 交換子部分群は商がアーベル群となる最小の正規部分群であるという点で重要である。すなわち、商 G/N がアーベル群となる必要十分条件は正規部分群 N が交換子部分群を含むことである。ある意味で交換子部分群はアーベル群との差異を表していて、交換子部分群が大きいほどアーベル群との隔たりが大きいと言える。 (ja)
- In algebra, in particolare in teoria dei gruppi, il sottogruppo derivato di un gruppo è il sottogruppo generato dai suoi commutatori. Il derivato di un gruppo si denota solitamente con o , mentre l'iterata -esima della derivazione di si denota con . (it)
- Коммутант в общей алгебре — подсистема алгебр, содержащих групповую структуру (подгруппа, подкольцо, в наиболее общем случае — подгруппа мультиоператорной группы), показывающая степень некоммутативности групповой операции. Коммутант группы является наименьшей нормальной подгруппой, такой что фактор по ней является абелевой группой. Коммутант кольца — идеал, порождённый всевозможными произведениями элементов. (ru)
- Em matemática, mais especificamente em álgebra abstrata, o subgrupo comutador ou subgrupo derivado de um grupo é o subgrupo gerado por todos os comutadores do grupo. Em outras palavras, o comutador de um grupo é o menor subgrupo normal tal que o quociente é abeliano. (pt)
- Комутант групи (також похідна підгрупа) — підгрупа породжена усіма комутаторами групи. Комутант є найменшою нормальною підгрупою факторгрупа по якій є абелевою. Комутатор групи G, позначається [G,G]. (uk)
- 在抽象代数中,一个群的换位子群或导群,是指由这个群的所有交换子所生成的子群,记作[G,G]、G′或G(1) 。每个群都对应着一个确定的交换子群。在一个群G的所有正规子群中,交换子群G′是使得G对它的商群为交换群的最小子群。在某种意义上,交换子群提供了群G的可交换程度。因为从交换子的定义: ,如果x与y交换,那么[x,y]=e。一个群内可交换的元素越多,交换子就越少,交换子群也就越小。可交换群的交换子群为平凡群{e}。 (zh)
- In der Mathematik bezeichnet die Kommutatorgruppe (oder Kommutator-Untergruppe) zu einer Gruppe diejenige Untergruppe, die von den Kommutatoren in der Gruppe erzeugt wird: Die Kommutatorgruppe wird auch mit und mit (oder ) bezeichnet und abgeleitete Gruppe (von ) genannt. Im Allgemeinen ist die Menge aller Kommutatoren keine Gruppe, die Phrase „erzeugt von“ in der Definition (gleichbedeutend mit den spitzen Klammern in der Formel) kann also nicht weggelassen werden. (de)
|