About: Conformal symmetry     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Symmetry105064827, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/7fPy1Gtr9N

In mathematical physics, the conformal symmetry of spacetime is expressed by an extension of the Poincaré group. The extension includes special conformal transformations and dilations. In three spatial plus one time dimensions, conformal symmetry has 15 degrees of freedom: ten for the Poincaré group, four for special conformal transformations, and one for a dilation.

AttributesValues
rdf:type
rdfs:label
  • Simetria conforme (ca)
  • Simetría conforme (es)
  • Conformal symmetry (en)
  • Symétrie conforme (fr)
  • 등각 대칭 (ko)
  • 共形変換 (ja)
  • Simetria conformal (pt)
  • 共形對稱 (zh)
rdfs:comment
  • En física teòrica, la simetria conforme de l'espaitemps és una extensió de la simetria del grup de Poincaré, que inclou transformacions geomètriques conformes especials i homotècies (dilatacions). La simetria conforme té 15 graus de llibertat: 10 per al grup de Poincaré, 4 per les transformacions conformes especials, i 1 per a l'homotècia (dilatació). Harry Bateman i Ebenezer Cunningham foren els primers a estudiar la simetria conforme de les equacions de Maxwell. Van anomenar "transformació d'ona esfèrica" a l'expressió genèrica de la simetria conforme. (ca)
  • En física teórica, la simetría conforme es la propiedad de algunas teorías físicas de ser invariantes bajo una transformación conforme, una transformación que no altera la medida de los ángulos. (es)
  • 共形変換(きょうけいへんかん、conformal transformation)とは、空間のある1点で交わった2曲線の接線のなす角度が保存される変換、等角写像とも。並進、回転、などはその最も簡単な例。特に、2次元では無限個の変換が存在することが示され、複素平面上の解析関数で表現できる。場の理論において、共形変換のもとで不変となっている物理系を記述する理論を共形場理論と呼ぶ。 (ja)
  • 양자장론에서 등각 대칭(等角對稱, 영어: conformal symmetry)은 양자장론이 가질 수 있는 대칭의 하나이다. 대략, 이 대칭을 가진 이론은 특별한 길이 눈금을 갖지 않고, 모든 길이 눈금이 동등하다. 등각 대칭을 갖는 양자장론을 등각 장론이라 한다. (ko)
  • Em física teórica, a simetria conformal (ou simetria conforme) é uma simetria sob dilatação (invariância de escala) e sob as transformações especiais conformes. Em conjunto com o grupo de Poincaré esses geram o grupo de simetria conformada. (pt)
  • 在数学物理和共形場論中,时空的共形对称包括时空的龐加萊群。 共形群有15個自由度: * 龐加萊群:10 * 特殊共形變換:4 * 位似变换:1 (zh)
  • In mathematical physics, the conformal symmetry of spacetime is expressed by an extension of the Poincaré group. The extension includes special conformal transformations and dilations. In three spatial plus one time dimensions, conformal symmetry has 15 degrees of freedom: ten for the Poincaré group, four for special conformal transformations, and one for a dilation. (en)
  • En physique théorique, la symétrie conforme désigne la symétrie sous changement d', on dit aussi sous dilatation, ainsi que sous les transformations conformes spéciales. Sa combinaison avec le groupe de Poincaré donne le groupe de symétrie conforme ou plus simplement, groupe conforme. Voici un exemple de représentation du groupe conforme dans l'espace-temps, ou plus précisément de son algèbre de Lie Les relations de commutation entre ces générateurs, supplémentaires à celles du groupe de Poincaré sont , , (fr)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Conformal_grid_after_Möbius_transformation.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Conformal_grid_before_Möbius_transformation.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software