About: Crinkled arc     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/A8wr3WdcA7

In mathematics, and in particular the study of Hilbert spaces, a crinkled arc is a type of continuous curve. The concept is usually credited to Paul Halmos. Specifically, consider where is a Hilbert space with inner product We say that is a crinkled arc if it is continuous and possesses the crinkly property: if then that is, the chords and are orthogonal whenever the intervals and are non-overlapping.

AttributesValues
rdfs:label
  • Crinkled arc (en)
rdfs:comment
  • In mathematics, and in particular the study of Hilbert spaces, a crinkled arc is a type of continuous curve. The concept is usually credited to Paul Halmos. Specifically, consider where is a Hilbert space with inner product We say that is a crinkled arc if it is continuous and possesses the crinkly property: if then that is, the chords and are orthogonal whenever the intervals and are non-overlapping. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, and in particular the study of Hilbert spaces, a crinkled arc is a type of continuous curve. The concept is usually credited to Paul Halmos. Specifically, consider where is a Hilbert space with inner product We say that is a crinkled arc if it is continuous and possesses the crinkly property: if then that is, the chords and are orthogonal whenever the intervals and are non-overlapping. Halmos points out that if two nonoverlapping chords are orthogonal, then "the curve makes a right-angle turn during the passage between the chords' farthest end-points" and observes that such a curve would "seem to be making a sudden right angle turn at each point" which would justify the choice of terminology. Halmos deduces that such a curve could not have a tangent at any point, and uses the concept to justify his statement that an infinite-dimensional Hilbert space is "even roomier than it looks". Writing in 1975, Richard Vitale considers Halmos's empirical observation that every attempt to construct a crinkled arc results in essentially the same solution and proves that is a crinkled arc if and only if, after appropriate normalizations, where is an orthonormal set. The normalizations that need to be allowed are the following: a) Replace the Hilbert space H by its smallest closed subspace containing all the values of the crinkled arc; b) uniform scalings; c) translations; d) reparametrizations.Now use these normalizations to define an equivalence relation on crinkled arcs if any two of them become identical after any sequence of such normalizations. Then there is just one equivalence class, and Vitale's formula describes a canonical example. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 64 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software