About: Cubic surface     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatAlgebraicSurfaces, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/6EGqmJByiq

In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space . The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4. A simple example is the Fermat cubic surface

AttributesValues
rdf:type
rdfs:label
  • Superficie cúbica (es)
  • Cubic surface (en)
  • Surface cubique (fr)
  • Кубическая поверхность (ru)
  • Кубічна поверхня (uk)
rdfs:comment
  • Una superficie cúbica es un estudiado en geometría algebraica. Es una en el espacio proyectivo tridimensional definido por un solo polinomio cúbico cuaternario homogéneo de grado 3 (por lo tanto, cúbico). Las superficies cúbicas son . (es)
  • En géométrie algébrique, une surface cubique est une variété algébrique surfacique. C'est donc une surface définie par un polynôme homogène de degré 3, dans l'espace projectif . On peut prendre par exemple égal à ou . (fr)
  • В алгебраической геометрии кубическая поверхность — это алгебраическая поверхность, задаваемая однородным многочленом третьей степени в проективном пространстве . Мы можем принять или . (ru)
  • В алгебричній геометрії кубічна поверхня — це алгебрична поверхня, що задається однорідним многочленом третього степеня в проєктивному просторі . Можна прийняти або . (uk)
  • In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space . The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4. A simple example is the Fermat cubic surface (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Cayley_cubic_2.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Schläfli_graph.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Clebsch_Cubic.png
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 72 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software