In geometry, a decagonal trapezohedron (or decagonal deltohedron) is the eighth in an infinite series of face-uniform polyhedra which are dual polyhedra to the antiprisms. It has twenty faces which are congruent kites. It is a isohedral figure, (face-transitive), having all its faces the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. Convex isohedral polyhedra are the shapes that will make fair dice.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Deklatera kajtopluredro (eo)
- Trapezoedro dekagonal (eu)
- Decagonal trapezohedron (en)
|
rdfs:comment
| - En geometrio, deklatera kajtopluredro aŭ estas pluredro, la oka en malfinia serio de kajtopluredroj. Ĝi havas 20 edrojn kiuj estas kajtoj. Ĝi estas edro-transitiva kaj ĝia estas deklatera kontraŭprismo. (eo)
- In geometry, a decagonal trapezohedron (or decagonal deltohedron) is the eighth in an infinite series of face-uniform polyhedra which are dual polyhedra to the antiprisms. It has twenty faces which are congruent kites. It is a isohedral figure, (face-transitive), having all its faces the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. Convex isohedral polyhedra are the shapes that will make fair dice. (en)
- Geometrian, trapezoedro dekagonala edo deltoedro dekagonala antiprismen dualen amaigabeko sailaren seigarrena da. Hogei aurpegi ditu: kometa kongruenteak. (eu)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
title
| |
urlname
| |
has abstract
| - En geometrio, deklatera kajtopluredro aŭ estas pluredro, la oka en malfinia serio de kajtopluredroj. Ĝi havas 20 edrojn kiuj estas kajtoj. Ĝi estas edro-transitiva kaj ĝia estas deklatera kontraŭprismo. (eo)
- In geometry, a decagonal trapezohedron (or decagonal deltohedron) is the eighth in an infinite series of face-uniform polyhedra which are dual polyhedra to the antiprisms. It has twenty faces which are congruent kites. It is a isohedral figure, (face-transitive), having all its faces the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. Convex isohedral polyhedra are the shapes that will make fair dice. (en)
- Geometrian, trapezoedro dekagonala edo deltoedro dekagonala antiprismen dualen amaigabeko sailaren seigarrena da. Hogei aurpegi ditu: kometa kongruenteak. (eu)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is foaf:primaryTopic
of | |