About: Derivation of the conjugate gradient method     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Rule105846932, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/AgB2KPH3JS

In numerical linear algebra, the conjugate gradient method is an iterative method for numerically solving the linear system where is symmetric positive-definite. The conjugate gradient method can be derived from several different perspectives, including specialization of the for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. The intent of this article is to document the important steps in these derivations.

AttributesValues
rdf:type
rdfs:label
  • Derivation of the conjugate gradient method (en)
  • 共轭梯度法的推导 (zh)
rdfs:comment
  • In numerical linear algebra, the conjugate gradient method is an iterative method for numerically solving the linear system where is symmetric positive-definite. The conjugate gradient method can be derived from several different perspectives, including specialization of the for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. The intent of this article is to document the important steps in these derivations. (en)
  • 在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组 的迭代方法。共轭梯度法可以从不同的角度推导而得,包括作为求解最优化问题的的特例,以及作为求解特征值问题的/迭代的变种。 本条目记述这些推导方法中的重要步骤。 (zh)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In numerical linear algebra, the conjugate gradient method is an iterative method for numerically solving the linear system where is symmetric positive-definite. The conjugate gradient method can be derived from several different perspectives, including specialization of the for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. The intent of this article is to document the important steps in these derivations. (en)
  • 在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组 的迭代方法。共轭梯度法可以从不同的角度推导而得,包括作为求解最优化问题的的特例,以及作为求解特征值问题的/迭代的变种。 本条目记述这些推导方法中的重要步骤。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software