About: Derived algebraic geometry     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Organisation, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/59CyJC8dus

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory (or motivic homotopy theory) of singular algebraic varieties and cotangent complexes in deformation theory (cf. J. Francis), among the other applications.

AttributesValues
rdf:type
rdfs:label
  • Derived algebraic geometry (en)
  • 導来代数幾何学 (ja)
rdfs:comment
  • Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory (or motivic homotopy theory) of singular algebraic varieties and cotangent complexes in deformation theory (cf. J. Francis), among the other applications. (en)
  • 導来代数幾何学は、代数幾何学を、局所座標を与える可換環を(上の)次数付き微分代数に置き換えることで一般化する数学の一分野である。 単純可換環または --代数的トポロジーからの環スペクトルとなる。その高次ホモトピー群は、構造層の非離散性(Torなど)を説明する。グロタンディークのスキーム理論は、構造層を冪零元へ運ぶことを可能にする。導来代数幾何学はこの考えの拡張と考えることができ、他の応用として、変形理論における特異代数多様体と非特異代数多様体の交叉理論(またはモチヴィックホモトピー理論 )の自然な導出を引き起こす。(cf. J. Francis) (ja)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over ), simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory (or motivic homotopy theory) of singular algebraic varieties and cotangent complexes in deformation theory (cf. J. Francis), among the other applications. (en)
  • 導来代数幾何学は、代数幾何学を、局所座標を与える可換環を(上の)次数付き微分代数に置き換えることで一般化する数学の一分野である。 単純可換環または --代数的トポロジーからの環スペクトルとなる。その高次ホモトピー群は、構造層の非離散性(Torなど)を説明する。グロタンディークのスキーム理論は、構造層を冪零元へ運ぶことを可能にする。導来代数幾何学はこの考えの拡張と考えることができ、他の応用として、変形理論における特異代数多様体と非特異代数多様体の交叉理論(またはモチヴィックホモトピー理論 )の自然な導出を引き起こす。(cf. J. Francis) (ja)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 64 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software