In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an equivalence between the category of (nonnegatively graded) chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the th homology group of a chain complex is the th homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. (In fact, the correspondence preserves the respective standard model structures.)
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Dold–Kan correspondence (en)
- 정규화 사슬 복합체 (ko)
|
rdfs:comment
| - 호몰로지 대수학에서 정규화 사슬 복합체(正規化사슬複合體, 영어: normalized chain complex)는 아벨 범주의 단체 대상에 대하여 정의되는 사슬 복합체이다. 이는 아벨 범주의 단체 대상의 범주와 자연수 등급 사슬 복합체의 범주 사이의 동치를 정의하며, 이 동치를 돌트-칸 대응(Dold–Kan對應, 영어: Dold–Kan correspondence)이라고 한다. (ko)
- In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an equivalence between the category of (nonnegatively graded) chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the th homology group of a chain complex is the th homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. (In fact, the correspondence preserves the respective standard model structures.) (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
id
| - Dold-Kan+correspondence (en)
|
title
| - Dold-Kan correspondence (en)
|
has abstract
| - In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an equivalence between the category of (nonnegatively graded) chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the th homology group of a chain complex is the th homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. (In fact, the correspondence preserves the respective standard model structures.) Example: Let C be a chain complex that has an abelian group A in degree n and zero in all other degrees. Then the corresponding simplicial group is the Eilenberg–MacLane space . There is also an ∞-category-version of the Dold–Kan correspondence. The book "Nonabelian Algebraic Topology" cited below has a Section 14.8 on cubical versions of the Dold–Kan theorem, and relates them to a previous equivalence of categories between cubical omega-groupoids and crossed complexes, which is fundamental to the work of that book. (en)
- 호몰로지 대수학에서 정규화 사슬 복합체(正規化사슬複合體, 영어: normalized chain complex)는 아벨 범주의 단체 대상에 대하여 정의되는 사슬 복합체이다. 이는 아벨 범주의 단체 대상의 범주와 자연수 등급 사슬 복합체의 범주 사이의 동치를 정의하며, 이 동치를 돌트-칸 대응(Dold–Kan對應, 영어: Dold–Kan correspondence)이라고 한다. (ko)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is known for
of | |
is known for
of | |
is foaf:primaryTopic
of | |