About: Dold–Kan correspondence     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Set107996689, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3yWvLYjNhy

In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an equivalence between the category of (nonnegatively graded) chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the th homology group of a chain complex is the th homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. (In fact, the correspondence preserves the respective standard model structures.)

AttributesValues
rdf:type
rdfs:label
  • Dold–Kan correspondence (en)
  • 정규화 사슬 복합체 (ko)
rdfs:comment
  • 호몰로지 대수학에서 정규화 사슬 복합체(正規化사슬複合體, 영어: normalized chain complex)는 아벨 범주의 단체 대상에 대하여 정의되는 사슬 복합체이다. 이는 아벨 범주의 단체 대상의 범주와 자연수 등급 사슬 복합체의 범주 사이의 동치를 정의하며, 이 동치를 돌트-칸 대응(Dold–Kan對應, 영어: Dold–Kan correspondence)이라고 한다. (ko)
  • In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an equivalence between the category of (nonnegatively graded) chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the th homology group of a chain complex is the th homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. (In fact, the correspondence preserves the respective standard model structures.) (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
id
  • Dold-Kan+correspondence (en)
title
  • Dold-Kan correspondence (en)
has abstract
  • In mathematics, more precisely, in the theory of simplicial sets, the Dold–Kan correspondence (named after Albrecht Dold and Daniel Kan) states that there is an equivalence between the category of (nonnegatively graded) chain complexes and the category of simplicial abelian groups. Moreover, under the equivalence, the th homology group of a chain complex is the th homotopy group of the corresponding simplicial abelian group, and a chain homotopy corresponds to a simplicial homotopy. (In fact, the correspondence preserves the respective standard model structures.) Example: Let C be a chain complex that has an abelian group A in degree n and zero in all other degrees. Then the corresponding simplicial group is the Eilenberg–MacLane space . There is also an ∞-category-version of the Dold–Kan correspondence. The book "Nonabelian Algebraic Topology" cited below has a Section 14.8 on cubical versions of the Dold–Kan theorem, and relates them to a previous equivalence of categories between cubical omega-groupoids and crossed complexes, which is fundamental to the work of that book. (en)
  • 호몰로지 대수학에서 정규화 사슬 복합체(正規化사슬複合體, 영어: normalized chain complex)는 아벨 범주의 단체 대상에 대하여 정의되는 사슬 복합체이다. 이는 아벨 범주의 단체 대상의 범주와 자연수 등급 사슬 복합체의 범주 사이의 동치를 정의하며, 이 동치를 돌트-칸 대응(Dold–Kan對應, 영어: Dold–Kan correspondence)이라고 한다. (ko)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software