About: Exact diagonalization     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3tyeAqryCo

Exact diagonalization (ED) is a numerical technique used in physics to determine the eigenstates and energy eigenvalues of a quantum Hamiltonian. In this technique, a Hamiltonian for a discrete, finite system is expressed in matrix form and diagonalized using a computer. Exact diagonalization is only feasible for systems with a few tens of particles, due to the exponential growth of the Hilbert space dimension with the size of the quantum system. It is frequently employed to study lattice models, including the Hubbard model, Ising model, Heisenberg model, t-J model, and SYK model.

AttributesValues
rdfs:label
  • Exact diagonalization (en)
  • 精確對角化法 (zh)
rdfs:comment
  • Exact diagonalization (ED) is a numerical technique used in physics to determine the eigenstates and energy eigenvalues of a quantum Hamiltonian. In this technique, a Hamiltonian for a discrete, finite system is expressed in matrix form and diagonalized using a computer. Exact diagonalization is only feasible for systems with a few tens of particles, due to the exponential growth of the Hilbert space dimension with the size of the quantum system. It is frequently employed to study lattice models, including the Hubbard model, Ising model, Heisenberg model, t-J model, and SYK model. (en)
  • 在量子力學中的一個量子系統,物理學家最有興趣的是找出這個量子系統的基態,也就是能量本徵值最小的態,例如:兩個自旋1/2的粒子所形成的量子系統中,若粒子之間的交互作用可寫成 其中、、表示第個自旋的包立矩陣。將上面4×4的矩陣對角化後可得本徵值:,對應的本徵向量為,而 即為這個系統中的基態。 可想而知,隨著量子系統的粒子數變多,且交互作用愈來愈複雜時,量子系統的基態很難用解析的方法計算出來,因此許多物理學家轉向利用數值方法來求得基態。 精確對角化法(exact diagonalization)是一個最直接求得基態的數值方法,但由於將哈密頓算符完整對角化非常花費時間與電腦記憶體,所以當需要的只是基態和少數激發態,通常利用Lanczos演算法和Davidson演算法。精確對角化法本身的物理概念極為簡單,若是只需要得到極小尺寸的結果,在程式撰寫方面也很容易,然而增加系統尺寸時,隨著所需的記憶體暴增,程式設計變得非常困難。主要困難之處在於如何有效運用有限的記憶體,以及提升程式運作的效率。目前電腦的條件下,精確對角化法的尺寸極限如下: 1. * 一維自旋-1/2的環:36個格點。 2. * 二維自旋-1/2的平方晶格:40個格點。 3. * 二維t-J模型的平方晶格:32個格點,4個電洞。 4. * 二維的平方晶格:32個格點。 5. * 一維:14個格點。 (zh)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Exact diagonalization (ED) is a numerical technique used in physics to determine the eigenstates and energy eigenvalues of a quantum Hamiltonian. In this technique, a Hamiltonian for a discrete, finite system is expressed in matrix form and diagonalized using a computer. Exact diagonalization is only feasible for systems with a few tens of particles, due to the exponential growth of the Hilbert space dimension with the size of the quantum system. It is frequently employed to study lattice models, including the Hubbard model, Ising model, Heisenberg model, t-J model, and SYK model. (en)
  • 在量子力學中的一個量子系統,物理學家最有興趣的是找出這個量子系統的基態,也就是能量本徵值最小的態,例如:兩個自旋1/2的粒子所形成的量子系統中,若粒子之間的交互作用可寫成 其中、、表示第個自旋的包立矩陣。將上面4×4的矩陣對角化後可得本徵值:,對應的本徵向量為,而 即為這個系統中的基態。 可想而知,隨著量子系統的粒子數變多,且交互作用愈來愈複雜時,量子系統的基態很難用解析的方法計算出來,因此許多物理學家轉向利用數值方法來求得基態。 精確對角化法(exact diagonalization)是一個最直接求得基態的數值方法,但由於將哈密頓算符完整對角化非常花費時間與電腦記憶體,所以當需要的只是基態和少數激發態,通常利用Lanczos演算法和Davidson演算法。精確對角化法本身的物理概念極為簡單,若是只需要得到極小尺寸的結果,在程式撰寫方面也很容易,然而增加系統尺寸時,隨著所需的記憶體暴增,程式設計變得非常困難。主要困難之處在於如何有效運用有限的記憶體,以及提升程式運作的效率。目前電腦的條件下,精確對角化法的尺寸極限如下: 1. * 一維自旋-1/2的環:36個格點。 2. * 二維自旋-1/2的平方晶格:40個格點。 3. * 二維t-J模型的平方晶格:32個格點,4個電洞。 4. * 二維的平方晶格:32個格點。 5. * 一維:14個格點。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software