About: Fedosov manifold     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5cLs8tBFA3

In mathematics, a Fedosov manifold is a symplectic manifold with a compatible torsion-free connection, that is, a triple (M, ω, ∇), where (M, ω) is a symplectic manifold (that is, is a symplectic form, a non-degenerate closed exterior 2-form, on a -manifold M), and ∇ is a symplectic torsion-free connection on (A connection ∇ is called compatible or symplectic if X ⋅ ω(Y,Z) = ω(∇XY,Z) + ω(Y,∇XZ) for all vector fields X,Y,Z ∈ Γ(TM). In other words, the symplectic form is parallel with respect to the connection, i.e., its covariant derivative vanishes.) Note that every symplectic manifold admits a symplectic torsion-free connection. Cover the manifold with Darboux charts and on each chart define a connection ∇ with Christoffel symbol . Then choose a partition of unity (subordinate to the co

AttributesValues
rdfs:label
  • Fedosov manifold (en)
rdfs:comment
  • In mathematics, a Fedosov manifold is a symplectic manifold with a compatible torsion-free connection, that is, a triple (M, ω, ∇), where (M, ω) is a symplectic manifold (that is, is a symplectic form, a non-degenerate closed exterior 2-form, on a -manifold M), and ∇ is a symplectic torsion-free connection on (A connection ∇ is called compatible or symplectic if X ⋅ ω(Y,Z) = ω(∇XY,Z) + ω(Y,∇XZ) for all vector fields X,Y,Z ∈ Γ(TM). In other words, the symplectic form is parallel with respect to the connection, i.e., its covariant derivative vanishes.) Note that every symplectic manifold admits a symplectic torsion-free connection. Cover the manifold with Darboux charts and on each chart define a connection ∇ with Christoffel symbol . Then choose a partition of unity (subordinate to the co (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a Fedosov manifold is a symplectic manifold with a compatible torsion-free connection, that is, a triple (M, ω, ∇), where (M, ω) is a symplectic manifold (that is, is a symplectic form, a non-degenerate closed exterior 2-form, on a -manifold M), and ∇ is a symplectic torsion-free connection on (A connection ∇ is called compatible or symplectic if X ⋅ ω(Y,Z) = ω(∇XY,Z) + ω(Y,∇XZ) for all vector fields X,Y,Z ∈ Γ(TM). In other words, the symplectic form is parallel with respect to the connection, i.e., its covariant derivative vanishes.) Note that every symplectic manifold admits a symplectic torsion-free connection. Cover the manifold with Darboux charts and on each chart define a connection ∇ with Christoffel symbol . Then choose a partition of unity (subordinate to the cover) and glue the local connections together to a global connection which still preserves the symplectic form. The famous result of gives a canonical deformation quantization of a Fedosov manifold. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software