About: Flat manifold     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatRiemannianManifolds, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5iZT1TNGfC

In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°. The universal cover of a complete flat manifold is Euclidean space. This can be used to prove the theorem of Bieberbach that all compact flat manifolds are finitely covered by tori; the 3-dimensional case was proved earlier by .

AttributesValues
rdf:type
rdfs:label
  • Flache Mannigfaltigkeit (de)
  • Variedad plana (es)
  • Variété plate (fr)
  • Flat manifold (en)
  • Varietà piatta (it)
rdfs:comment
  • In der Mathematik sind flache Mannigfaltigkeiten Riemannsche Mannigfaltigkeiten mit Schnittkrümmung konstant null. (de)
  • En matemáticas, se dice que una variedad riemanniana es plana si su curvatura es cero en todo punto. Intuitivamente, una variedad plana es aquella que «se parece localmente» a un espacio euclídeo en términos de distancias y ángulos, por ejemplo, en que los ángulos interiores de un triángulo suman 180°. El recubridor universal de una variedad plana completa es un espacio euclídeo. Esto puede usarse para probar el teorema de que dice que todas las variedades planas compactas están finitamente recubiertas por toros. El caso de dimensión 3 fue probado antes por . (es)
  • In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°. The universal cover of a complete flat manifold is Euclidean space. This can be used to prove the theorem of Bieberbach that all compact flat manifolds are finitely covered by tori; the 3-dimensional case was proved earlier by . (en)
  • In matematica, una varietà piatta è una varietà riemanniana a curvatura sezionale costantemente nulla. Gli esempi più importanti di varietà piatte in dimensione sono lo spazio euclideo ed il toro Una varietà in cui la curvatura sezionale è invece costantemente 1 o -1 è detta rispettivamente ellittica o iperbolica. (it)
  • En mathématiques, une surface de Riemann est dite plate si sa courbure de Gauss est nulle en tout point. Intuitivement, une variété plate ressemble « localement » à l'espace euclidien en termes de distances et d'angles, par exemple la somme des angles intérieurs d'un triangle est égale à 180°. Cette définition se généralise aux variétés riemanniennes dont le tenseur de courbure est nul en tout point.Les tores plats font partie des exemples les plus simples de variétés plates compactes. (fr)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
authorlink
  • Ernest Vinberg (en)
first
  • E.B. (en)
id
  • c/c027190 (en)
last
  • Vinberg (en)
title
  • Crystallographic group (en)
  • Flat Manifold (en)
urlname
  • FlatManifold (en)
has abstract
  • In der Mathematik sind flache Mannigfaltigkeiten Riemannsche Mannigfaltigkeiten mit Schnittkrümmung konstant null. (de)
  • En matemáticas, se dice que una variedad riemanniana es plana si su curvatura es cero en todo punto. Intuitivamente, una variedad plana es aquella que «se parece localmente» a un espacio euclídeo en términos de distancias y ángulos, por ejemplo, en que los ángulos interiores de un triángulo suman 180°. El recubridor universal de una variedad plana completa es un espacio euclídeo. Esto puede usarse para probar el teorema de que dice que todas las variedades planas compactas están finitamente recubiertas por toros. El caso de dimensión 3 fue probado antes por . (es)
  • In mathematics, a Riemannian manifold is said to be flat if its Riemann curvature tensor is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°. The universal cover of a complete flat manifold is Euclidean space. This can be used to prove the theorem of Bieberbach that all compact flat manifolds are finitely covered by tori; the 3-dimensional case was proved earlier by . (en)
  • En mathématiques, une surface de Riemann est dite plate si sa courbure de Gauss est nulle en tout point. Intuitivement, une variété plate ressemble « localement » à l'espace euclidien en termes de distances et d'angles, par exemple la somme des angles intérieurs d'un triangle est égale à 180°. Cette définition se généralise aux variétés riemanniennes dont le tenseur de courbure est nul en tout point.Les tores plats font partie des exemples les plus simples de variétés plates compactes. Le revêtement universel d'une variété plate complète est l'espace euclidien. Un théorème de Bieberbach montre également que toute variété plate compacte est un quotient fini d'un tore. (fr)
  • In matematica, una varietà piatta è una varietà riemanniana a curvatura sezionale costantemente nulla. Gli esempi più importanti di varietà piatte in dimensione sono lo spazio euclideo ed il toro Una varietà in cui la curvatura sezionale è invece costantemente 1 o -1 è detta rispettivamente ellittica o iperbolica. (it)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software