About: Free product     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatFreeAlgebraicStructures, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5JjivMWhdG

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group G ∗ H. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from G ∗ H to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group (the universal group with a given set of generators).

AttributesValues
rdf:type
rdfs:label
  • Freies Produkt (de)
  • Free product (en)
  • Producto libre de grupos (es)
  • Produit libre (fr)
  • Prodotto libero (it)
  • 자유곱 (ko)
  • 自由積 (ja)
  • Свободное произведение (ru)
  • 自由積 (zh)
  • Вільний добуток (uk)
rdfs:comment
  • In der Algebra versteht man unter dem freien Produkt eine bestimmte Konstruktion einer Gruppe aus zwei oder mehr gegebenen Gruppen. Man kann sich das freie Produkt als eine nicht-kommutative Entsprechung der direkten Summe vorstellen, ungefähr wie eine Entsprechung von nichtkommutativen Gruppen zu abelschen Gruppen. (de)
  • In algebra, il prodotto libero di due gruppi e è un nuovo gruppo, generalmente indicato con Tale gruppo è costruito prendendo tutte le parole aventi come lettere degli elementi in e in , considerate a meno di semplici operazioni. La nozione di gruppo libero è importante in topologia, perché riflette (tramite il gruppo fondamentale) l'operazione (detta bouquet) che consiste nell'attaccare due spazi topologici per un punto. (it)
  • 추상대수학에서 자유곱(自由곱, 영어: free product)은 주어진 두 대수 구조를 포함하는 "가장 일반적인" 대수 구조이다. 대수 구조 다양체의 범주에서의 쌍대곱이다. (ko)
  • Свободным произведением групп называется группа, порождённая элементами этих двух групп, без каких-либо дополнительных соотношений. Свободное произведение и обычно обозначается . (ru)
  • 在數學的群論中,自由積(英語:free product,法語:produit libre)是從兩個以上的構造出一個群的一種操作。兩個群G和H的自由積,是一個新的群G ∗ H。這個群包含G和H為子群,由G和H的元素生成,並且是有以上性質的群之中「最一般」的。自由積一定是無限群,除非G和H其一是平凡群。自由積的構造方法和自由群(由給定的生成元集合所能構造出的最一般的群)相似。 自由積是群範疇中的。 (zh)
  • У теорії груп вільним добутком груп називається нова група, що породжується елементами своїх множників і містить їх, як свої підгрупи. Операція вільного добутку груп має важливе значення у комбінаторній теорії груп і алгебричній топології. (uk)
  • In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group G ∗ H. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from G ∗ H to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group (the universal group with a given set of generators). (en)
  • En las matemáticas, particularmente en la teoría de grupos, el producto libre de grupos es la construcción de un nuevo grupo a partir de una dada colección de ellos y que permite la inclusión como subgrupos a cada uno de los factores que le construyen. Para ilustrar la construcción, más precisamente, utilicemos dos grupos G, H. Entonces su producto libre es el grupo que consiste en un nuevo grupo cuyos elementos tienen la forma canónica donde los y los es decir los elementos de G*H son reducidas de letras alternadas que son elementos de los dos grupos G y H respectivamente. (es)
  • En mathématiques, et plus particulièrement en théorie des groupes, le produit libre de deux groupes G et H est un nouveau groupe, noté G∗H, qui contient G et H comme sous-groupes, est engendré par les éléments de ces sous-groupes, et constitue le groupe « le plus général » possédant ces propriétés. Le produit libre est le coproduit, ou « somme », dans la catégorie des groupes, c'est-à-dire que la donnée de deux morphismes, de G et H dans un même groupe K, équivaut à celle d'un morphisme de G∗H dans K. (fr)
  • 数学、とくに群論における自由積(じゆうせき、英: free product)は、2つの群 G, H から新しい群 G ∗ H を構成する操作である。G ∗ H は G と H をともに部分群として含み、G と H の元によって生成され、そして、これらの性質を持つ「最も一般的な」群である。G と H の一方が自明でないかぎり、自由積は必ず無限群である。自由積の構成は自由群(与えられた生成集合から作ることのできる最も一般的な群)の構成と類似している。 自由積は群の圏における余積である。つまり、自由積が群論において果たす役割は、集合論における非交和や加群論における直和のそれと同じである。もとの群が可換であったとしても、一方が自明でない限り、自由積は可換ではない。したがって、自由積はアーベル群の圏における余積ではない。 自由積はファン・カンペンの定理のために代数トポロジーにおいて重要である。この定理はある条件を満たす2つの弧状連結位相空間の和集合の基本群は常にもとの空間の基本群の融合積であるというものである。とくに2つの空間のウェッジ和(すなわち1点で2つの空間を貼りあわせて得られる空間)の基本群は単に空間の基本群の自由積である。 (ja)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software