In algebra, the free product (coproduct) of a family of associative algebras over a commutative ring R is the associative algebra over R that is, roughly, defined by the generators and the relations of the 's. The free product of two algebras A, B is denoted by A ∗ B. The notion is a ring-theoretic analog of a free product of groups. In the category of commutative R-algebras, the free product of two algebras (in that category) is their tensor product.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
dcterms:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
Link from a Wikipage to an external page | |
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is rdfs:seeAlso of | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage redirect of | |
is foaf:primaryTopic of |