About: Fundamental theorem of calculus     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4arC7S3vH

The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). The two operations are inverses of each other apart from a constant value which depends on where one starts to compute area.

AttributesValues
rdf:type
rdfs:label
  • المبرهنة الأساسية للتفاضل والتكامل (ar)
  • Teorema fonamental del càlcul (ca)
  • Základní věta integrálního počtu (cs)
  • Fundamentalsatz der Analysis (de)
  • Fundamental theorem of calculus (en)
  • Θεμελιώδες θεώρημα του λογισμού (el)
  • Fundamenta teoremo de kalkulo (eo)
  • Teorema fundamental del cálculo (es)
  • Kalkuluaren oinarrizko teorema (eu)
  • Bunteoirim an chalcalais (ga)
  • Teorema dasar kalkulus (in)
  • Teorema fondamentale del calcolo integrale (it)
  • Théorème fondamental de l'analyse (fr)
  • Hoofdstelling van de integraalrekening (nl)
  • 微分積分学の基本定理 (ja)
  • Podstawowe twierdzenie rachunku całkowego (pl)
  • Teorema fundamental do cálculo (pt)
  • Analysens fundamentalsats (sv)
  • Теорема Ньютона — Лейбница (ru)
  • Формула Ньютона — Ляйбніца (uk)
  • 微积分基本定理 (zh)
rdfs:comment
  • النظرية الأساسية للتفاضل والتكامل تربط بين عملتي التفاضل والتكامل. الجزء الأول من النظرية ينص على أن التكامل المحدد يمكن عكسه بالتفاضل.الجزء الثاني من النظرية يمكن الشخص من حساب تكامل محدد لدالة باستخدام أحد اشتقاقاتها العكسية غير المحدودة كثرة. هذا الجزء من النظرية لهُ أهمية كبيرة عملياً لأنه يسهل حساب التكاملات المحددة بشكل كبير. (ar)
  • Der Fundamentalsatz der Analysis, auch bekannt als Hauptsatz der Differential- und Integralrechnung (HDI), ist ein mathematischer Satz, der die beiden grundlegenden Konzepte der Analysis miteinander in Verbindung bringt, nämlich das der Integration und das der Differentiation. Er sagt aus, dass Ableiten bzw. Integrieren jeweils die Umkehrung des anderen ist. Der Hauptsatz der Differential- und Integralrechnung besteht aus zwei Teilen, die manchmal als erster und zweiter Hauptsatz der Differential- und Integralrechnung bezeichnet werden. Die konkrete Formulierung des Satzes und sein Beweis variieren je nach Aufbau der betrachteten Integrationstheorie. Hier wird zunächst das Riemann-Integral betrachtet. (de)
  • Sa mhatamaitic, faoi chúinsí áirithe, is fíor gur (d/dx)(∫0x f(t) dt) = f(x). Aontaíonn an teoirim seo calcalas difreálach le calcalas suimeálach. Luaitear Gottfried Leibnitz is Isaac Newton mar cheapadóirí na teoirime bunúsaí seo. (ga)
  • 微分積分学の基本定理(びぶんせきぶんがくのきほんていり、英: fundamental theorem of calculus)とは、「関数に対する微分と積分は互いの逆操作である」 ということを主張する解析学の定理である。微分積分法の基本定理ともいう。 微分積分学の基本定理は一変数の関数に対するものだが、多変数関数への拡張は、ストークスの定理として知られる。 微分積分学の基本定理の発見以前は、微分法(接線法)と積分法(求積法)は別個の問題と捉えられていた。微分積分学の基本定理はアイザック・ニュートンによって1665年頃、ゴットフリート・ライプニッツによって1675年頃に、それぞれ独立に発見されている。当初ニュートンはこの結果を発表せず、(ニュートンより後に発見した)ライプニッツが先に公表したために先取権を巡って論争となった。 (ja)
  • De hoofdstelling van de integraalrekening is een stelling uit de wiskunde die het verband geeft tussen de begrippen afgeleide en de integraal. Het is een centraal resultaat van de integraalrekening, of ruimer: de reële analyse, vandaar de naam. De stelling zegt dat differentiëren en integreren elkaars omgekeerde bewerkingen zijn. De concrete formulering en het bewijs hangt af van de gekozen definities en de gebruikte notie van integratie. In dit artikel wordt de meest elementaire notie van integreren gebruikt: de riemannintegraal. (nl)
  • Формула Ньютона — Лейбница, или основная теорема анализа, даёт соотношение между двумя операциями: взятием интеграла Римана и вычислением первообразной. (ru)
  • El teorema fonamental del càlcul integral consisteix en l'afirmació de què la derivada i integral d'una funció matemàtica són operacions inverses. Això significa que tota funció contínua integrable verifica que la derivada de la seva integral és ella mateixa. Aquest teorema és central en la branca de les matemàtiques anomenada càlcul. Una conseqüència directa d'aquest teorema, denominada ocasionalment segon teorema fonamental del càlcul, permet calcular la integral d'una funció utilitzant l'antiderivada de la funció que s'ha d'integrar. (ca)
  • Základní věta integrálního počtu udává vztah mezi dvěma základními operacemi integrálního počtu: derivováním a integrováním. První část věty, která je také někdy nazývána první základní větou integrálního počtu, ukazuje, že je možné obrátit derivováním. První část je také důležitá, protože pro spojité funkce dokazuje existenci primitivního integrálu. (cs)
  • Το Θεμελιώδες θεώρημα του λογισμού είναι ένα θεώρημα που συνδέει την έννοια της παραγώγου μιας συνάρτησης με την έννοια του ολοκληρώματος μιας συνάρτησης. Το πρώτο μέρος του θεωρήματος, το οποίο συχνά καλείται το πρώτο θεμελιώδες θεώρημα του λογισμού, αναφέρεται στο ότι το μιας συνάρτησης συνδέεται με την της και μπορεί να αντιστραφεί με παραγώγηση. Αυτό το μέρος του θεωρήματος είναι σημαντικό καθώς εγγυάται την ύπαρξη αντιπαραγώγων για συνεχείς συναρτήσεις. (el)
  • La fundamenta teoremo de kalkulo, nomita ankaŭ teoremo de Torricelli-Barrow, estas gravega teoremo de analitiko. Ĝi estas aserto, ke la du plej gravaj operacioj de kalkulo, diferencialo kaj integralo, estas inversaj. Do, se funkcio estus unue integrigita kaj poste diferenciita, la originala funkcio reaperus. Grava sekvo de ĉi tiu teoremo, kelkfoje nomata la dua fundamenta teoremo de kalkulo, estas ke oni povas uzi la malderivaĵon de funkcio por kalkuli ĝian integralon. (eo)
  • The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). The two operations are inverses of each other apart from a constant value which depends on where one starts to compute area. (en)
  • El teorema fundamental del cálculo consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas.​ Esto significa que toda función acotada e integrable (siendo continua o discontinua en un número finito de puntos) verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominada análisis matemático o cálculo infinitesimal. (es)
  • Kalkuluaren oinarrizko teorema (edo Kalkulu inegralaren oinarrizko teorema) funtzio baten deribazioa eta integrazioa alderantzizko eragiketak direla baieztatzean datza. Baieztapen horrek edozein funtzio jarraitu integragarrirako egiaztatzen du haren integralaren deribatua hura bera dela. Teorema hori funtsezkoa da matematikaren adarretako bat den analisi matematiko edo kalkulu deiturikoan. (eu)
  • Teorema dasar kalkulus menjelaskan relasi antara dua operasi pusat kalkulus, yaitu pendiferensialan dan pengintegralan. Bagian pertama dari teorema ini, kadang disebut sebagai teorema dasar kalkulus pertama, menunjukkan bahwa sebuah integral tak tentu dapat dibalikkan menggunakan pendiferensialan. Bagian kedua, kadang disebut sebagai teorema dasar kalkulus kedua, mengizinkan seseorang menghitung sebuah fungsi menggunakan salah satu dari banyak antiturunan. Bagian teorema ini memiliki aplikasi yang sangat penting, karena ia dengan signifikan mempermudah perhitungan integral tertentu. (in)
  • En mathématiques, le théorème fondamental de l'analyse (ou théorème fondamental du calcul différentiel et intégral) établit que les deux opérations de base de l'analyse, la dérivation et l'intégration, sont, dans une certaine mesure, réciproques l'une de l'autre. Il est constitué de deux familles d'énoncés (plus ou moins généraux selon les versions, et dépendant de la théorie de l'intégration choisie) : * premier théorème : certaines fonctions sont « la dérivée de leur intégrale » ; * second théorème : certaines fonctions sont « l'intégrale de leur dérivée ». (fr)
  • In matematica, il teorema fondamentale del calcolo integrale, detto anche teorema di Torricelli-Barrow, stabilisce un'importante connessione tra i concetti di integrale e derivata per funzioni a valori reali di variabile reale. Una prima versione del teorema è dovuta a James Gregory, mentre Isaac Barrow ne fornì una versione più generale. Isaac Newton, studente di Barrow, e Gottfried Leibniz completarono successivamente lo sviluppo della teoria matematica in cui è ambientato il teorema. (it)
  • Podstawowe twierdzenie rachunku całkowego, podstawowe twierdzenie analizy, twierdzenie Newtona-Leibniza – twierdzenie mówiące o tym, że podstawowe operacje rachunku różniczkowego i całkowego – różniczkowanie i całkowanie – są operacjami odwrotnymi. Dokładniej, jeżeli dana jest funkcja ciągła to pochodna jej funkcji górnej granicy całkowania jest równa Bezpośrednią konsekwencją twierdzenia jest możliwość wykorzystania funkcji pierwotnej do obliczania całki oznaczonej danej funkcji. (pl)
  • O teorema fundamental do cálculo é a base das duas operações centrais do cálculo, diferenciação e integração, que são considerados como inversos um do outro. Isso significa que se uma função contínua é primeiramente integrada e depois diferenciada (ou vice-versa), volta-se na função original. Este teorema é de importância central no cálculo tanto que recebe o nome teorema fundamental para todo o campo de estudo. Uma consequência importante disto, às vezes chamada de segundo teorema fundamental do cálculo, permite computar integrais utilizando a antiderivada da função a ser integrada. Em seu livro de 2003 (pág.393), James Stewart credita a ideia que conduziu ao teorema fundamental ao matemático inglês Isaac Barrow apesar da primeira prova conhecida deste teorema ser reconhecida ao matemátic (pt)
  • Enligt analysens fundamentalsats (analysens huvudsats eller integralkalkylens huvudsats) är de två centrala operationerna inom analysen, derivering och integrering, varandras inverser. Detta innebär att om en kontinuerlig funktion först integreras och sedan deriveras, så fås den ursprungliga funktionen tillbaka. En viktig konsekvens av denna sats är att integraler kan beräknas med hjälp av en primitiv funktion till den funktion som skall integreras. Satsen kan formuleras som Antag att en funktion f är kontinuerlig i intervallet och definiera Då gäller: (sv)
  • Фо́рмула Ньюто́на-Ле́йбніца для обчислення визначеного інтегралу є узагальненням методу Архімеда для обчислення площ і поверхонь плоских, криволінійних поверхонь, об'ємів тіл, довжин кривих та інших задач. Нехай функція неперервна на відрізку [а, b] і відома її первісна , тоді визначений інтеграл від функції можна обчислити за формулою: Ця формула називається формулою Ньютона—Лейбніца. Іноді її називають основною формулою інтегрального числення. Для скорочення запису часто застосовується позначення: (uk)
  • 微积分基本定理(英語:Fundamental theorem of calculus)描述了微积分的两个主要运算──微分和积分之间的关系。 定理的第一部分,称为微积分第一基本定理,此定理表明:給定任一連續函數,可以(利用積分)構造出該函數的反導函數。這一部分定理的重要之處在於它保證了連續函數的反導函數的存在性。 定理的第二部分,称为微积分第二基本定理或牛顿-莱布尼茨公式,表明某函數的定积分可以用該函數的任意一個反導函數来计算。这一部分是微積分或數學分析中相當關鍵且應用很廣的一個定理,因为它大大简化了定积分的计算。 该定理的一个特殊形式,首先由詹姆斯·格里高利(1638-1675)证明和出版。定理的一般形式,则由艾萨克·巴罗完成证明。 對微积分基本定理比較直觀的理解是:把函數在一段區間的「无穷小变化」全部「加起來」,會等于该函數的净变化,這裡「無窮小變化」就是微分,「加起來」就是積分,淨變化就是該函數在區間兩端點的差。 我们从一个例子开始。假设有一个物体在直线上运动,其位置为x(t),其中t为时间,x(t)意味着x是t的函数。这个函数的导数等于位置的无穷小变化dx除以时间的无穷小变化dt(当然,该导数本身也与时间有关)。我们把速度定义为位置的变化除以时间的变化。用: 整理,得 (zh)
rdfs:seeAlso
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Riemann_integral_irregular.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/FTC_geometric.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Fundamental_theorem_of_calculus_(animation_).gif
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 64 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software