About: Geometrothermodynamics     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:ProgrammingLanguage, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2GSwphbQmg

In physics, geometrothermodynamics (GTD) is a formalism developed in 2007 by Hernando Quevedo to describe the properties of thermodynamic systems in terms of concepts of differential geometry. Consider a thermodynamic system in the framework of classical equilibrium thermodynamics. The states of thermodynamic equilibrium are considered as points of an abstract equilibrium space in which a Riemannian metric can be introduced in several ways. In particular, one can introduce Hessian metrics like the Fisher information metric, the Weinhold metric, the Ruppeiner metric and others, whose components are calculated as the Hessian of a particular thermodynamic potential.

AttributesValues
rdf:type
rdfs:label
  • Geometrothermodynamics (en)
rdfs:comment
  • In physics, geometrothermodynamics (GTD) is a formalism developed in 2007 by Hernando Quevedo to describe the properties of thermodynamic systems in terms of concepts of differential geometry. Consider a thermodynamic system in the framework of classical equilibrium thermodynamics. The states of thermodynamic equilibrium are considered as points of an abstract equilibrium space in which a Riemannian metric can be introduced in several ways. In particular, one can introduce Hessian metrics like the Fisher information metric, the Weinhold metric, the Ruppeiner metric and others, whose components are calculated as the Hessian of a particular thermodynamic potential. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In physics, geometrothermodynamics (GTD) is a formalism developed in 2007 by Hernando Quevedo to describe the properties of thermodynamic systems in terms of concepts of differential geometry. Consider a thermodynamic system in the framework of classical equilibrium thermodynamics. The states of thermodynamic equilibrium are considered as points of an abstract equilibrium space in which a Riemannian metric can be introduced in several ways. In particular, one can introduce Hessian metrics like the Fisher information metric, the Weinhold metric, the Ruppeiner metric and others, whose components are calculated as the Hessian of a particular thermodynamic potential. Another possibility is to introduce metrics which are independent of the thermodynamic potential, a property which is shared by all thermodynamic systems in classical thermodynamics. Since a change of thermodynamic potential is equivalent to a Legendre transformation, and Legendre transformations do not act in the equilibrium space, it is necessary to introduce an auxiliary space to correctly handle the Legendre transformations. This is the so-called thermodynamic phase space. If the phase space is equipped with a Legendre invariant Riemannian metric, a smooth map can be introduced that induces a thermodynamic metric in the equilibrium manifold. The thermodynamic metric can then be used with different thermodynamic potentials without changing the geometric properties of the equilibrium manifold. One expects the geometric properties of the equilibrium manifold to be related to the macroscopic physical properties. The details of this relation can be summarized in three main points: 1. * Curvature is a measure of the thermodynamical interaction. 2. * Curvature singularities correspond to curvature phase transitions. 3. * Thermodynamic geodesics correspond to quasi-static processes. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 46 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software