About: Henselian ring     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:AnatomicalStructure, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4nBM8NtoTQ

In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are ,, and .

AttributesValues
rdf:type
rdfs:label
  • Henselscher Ring (de)
  • Henselian ring (en)
  • 헨젤 환 (ko)
  • ヘンゼル環 (ja)
  • Кільце Гензеля (uk)
rdfs:comment
  • Ein Ring heißt henselscher Ring (nach K. Hensel) bzgl. eines maximalen Ideals , falls die Aussage des henselschen Lemmas bezüglich der Reduktion nach gilt. Wichtigstes Beispiel sind Bewertungsringe vollständig bewerteter Körper. Das maximale Ideal ist in diesem Fall die Menge aller Elemente mit Bewertung . (de)
  • In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are ,, and . (en)
  • 가환대수학에서 헨젤 환(Hensel環, 영어: Henselian ring)은 잉여류체에서의 다항식의 근이 환에서의 근으로 항상 올려질 수 있는 가환환이다. (ko)
  • ヘンゼル環 (ヘンゼルかん、Henselian ring あるいは Hensel ring) は、数学においてヘンゼルの補題が成り立つような局所環である。それらは によって導入され、Kurt Hensel にちなんで名づけた。東屋はもともとヘンゼル環に非可換環を許したが、たいていの著者は今では可換環に制限している。 ヘンゼル環のいくつかの標準的な参考文献は ,, そして である。 (ja)
  • Кільцем Гензеля називається комутативне локальне кільце для якого виконується лема Гензеля. Цей клас кілець ввів японський математик Горо Азумайа, який назвав їх на честь Курта Гензеля. Для кожного локального кільця можна отримати гензелеве кільце за допомогою процедури гензелізації. У комутативній алгебрі гензелізація часто замінює операцію поповнення, що відіграє важливу роль при локальному дослідженні об'єктів.В теорії етальних морфізмів і етальної топології гензелева R-алгебра розглядається як індуктивна границя етальних розширень кільця. (uk)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
first
  • V. I. (en)
id
  • H/h046940 (en)
last
  • Danilov (en)
title
  • Hensel ring (en)
has abstract
  • Ein Ring heißt henselscher Ring (nach K. Hensel) bzgl. eines maximalen Ideals , falls die Aussage des henselschen Lemmas bezüglich der Reduktion nach gilt. Wichtigstes Beispiel sind Bewertungsringe vollständig bewerteter Körper. Das maximale Ideal ist in diesem Fall die Menge aller Elemente mit Bewertung . (de)
  • In mathematics, a Henselian ring (or Hensel ring) is a local ring in which Hensel's lemma holds. They were introduced by , who named them after Kurt Hensel. Azumaya originally allowed Henselian rings to be non-commutative, but most authors now restrict them to be commutative. Some standard references for Hensel rings are ,, and . (en)
  • 가환대수학에서 헨젤 환(Hensel環, 영어: Henselian ring)은 잉여류체에서의 다항식의 근이 환에서의 근으로 항상 올려질 수 있는 가환환이다. (ko)
  • ヘンゼル環 (ヘンゼルかん、Henselian ring あるいは Hensel ring) は、数学においてヘンゼルの補題が成り立つような局所環である。それらは によって導入され、Kurt Hensel にちなんで名づけた。東屋はもともとヘンゼル環に非可換環を許したが、たいていの著者は今では可換環に制限している。 ヘンゼル環のいくつかの標準的な参考文献は ,, そして である。 (ja)
  • Кільцем Гензеля називається комутативне локальне кільце для якого виконується лема Гензеля. Цей клас кілець ввів японський математик Горо Азумайа, який назвав їх на честь Курта Гензеля. Для кожного локального кільця можна отримати гензелеве кільце за допомогою процедури гензелізації. У комутативній алгебрі гензелізація часто замінює операцію поповнення, що відіграє важливу роль при локальному дослідженні об'єктів.В теорії етальних морфізмів і етальної топології гензелева R-алгебра розглядається як індуктивна границя етальних розширень кільця. (uk)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is rdfs:seeAlso of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software