In algebraic topology, a branch of mathematics, a homotopy sphere is an n-manifold that is homotopy equivalent to the n-sphere. It thus has the same homotopy groups and the same homology groups as the n-sphere, and so every homotopy sphere is necessarily a homology sphere. The topological generalized Poincaré conjecture is that any n-dimensional homotopy sphere is homeomorphic to the n-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005.
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
dcterms:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
gold:hypernym | |
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is foaf:primaryTopic of |