In the mathematical field of set theory, an ideal is a partially ordered collection of sets that are considered to be "small" or "negligible". Every subset of an element of the ideal must also be in the ideal (this codifies the idea that an ideal is a notion of smallness), and the union of any two elements of the ideal must also be in the ideal. More formally, given a set an ideal on is a nonempty subset of the powerset of such that: 1. * 2. * if and then and 3. * if then
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
dct:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
Link from a Wikipage to an external page | |
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
gold:hypernym | |
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of |
|
is Wikipage redirect of | |
is Wikipage disambiguates of | |
is foaf:primaryTopic of |