About: Ideal quotient     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatIdeals, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/58ta8Ddf42

In abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set Then (I : J) is itself an ideal in R. The ideal quotient is viewed as a quotient because if and only if . The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry (see below). (I : J) is sometimes referred to as a colon ideal because of the notation. In the context of fractional ideals, there is a related notion of the inverse of a fractional ideal.

AttributesValues
rdf:type
rdfs:label
  • Ideal quotient (en)
  • 아이디얼 몫 (ko)
  • イデアル商 (ja)
rdfs:comment
  • In abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set Then (I : J) is itself an ideal in R. The ideal quotient is viewed as a quotient because if and only if . The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry (see below). (I : J) is sometimes referred to as a colon ideal because of the notation. In the context of fractional ideals, there is a related notion of the inverse of a fractional ideal. (en)
  • 가환대수학에서 아이디얼 몫(영어: ideal quotient)은 같은 가환환 속의 두 아이디얼에 대하여 정의되는 이항 연산이다. 이는 아이디얼에 대한, 나눗셈의 일반화이다. 대수기하학에서, 이는 두 부분 대수다양체의 ‘차집합’에 해당한다. (대수기하학에서 아이디얼의 곱셈은 대략 부분 대수다양체의 ‘합집합’에 해당하며, 이는 그 역연산에 ‘가장 가까운’ 연산이다.) (ko)
  • 抽象代数学において、I と J が可換環 R のイデアルのとき、それらの イデアル商(英: ideal quotient) I : J とは集合 である。これを (I : J) と書くこともある。すると I : J も R のイデアルである。イデアル商は商と見ることができる、なぜならば であることと であることが同値だからだ。例えば、整数環 Z において (6) : (3) = (2) が成り立つ。イデアル商は準素分解の計算に役立つ。また代数幾何において差集合の記述で現れる(下記参照)。 I : J はその表記により コロンイデアル(colon ideal)と呼ばれることがある。分数イデアルの文脈では、分数イデアルのインバースに関連した概念がある。 (ja)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set Then (I : J) is itself an ideal in R. The ideal quotient is viewed as a quotient because if and only if . The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry (see below). (I : J) is sometimes referred to as a colon ideal because of the notation. In the context of fractional ideals, there is a related notion of the inverse of a fractional ideal. (en)
  • 가환대수학에서 아이디얼 몫(영어: ideal quotient)은 같은 가환환 속의 두 아이디얼에 대하여 정의되는 이항 연산이다. 이는 아이디얼에 대한, 나눗셈의 일반화이다. 대수기하학에서, 이는 두 부분 대수다양체의 ‘차집합’에 해당한다. (대수기하학에서 아이디얼의 곱셈은 대략 부분 대수다양체의 ‘합집합’에 해당하며, 이는 그 역연산에 ‘가장 가까운’ 연산이다.) (ko)
  • 抽象代数学において、I と J が可換環 R のイデアルのとき、それらの イデアル商(英: ideal quotient) I : J とは集合 である。これを (I : J) と書くこともある。すると I : J も R のイデアルである。イデアル商は商と見ることができる、なぜならば であることと であることが同値だからだ。例えば、整数環 Z において (6) : (3) = (2) が成り立つ。イデアル商は準素分解の計算に役立つ。また代数幾何において差集合の記述で現れる(下記参照)。 I : J はその表記により コロンイデアル(colon ideal)と呼ばれることがある。分数イデアルの文脈では、分数イデアルのインバースに関連した概念がある。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software