In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Identifizierbarkeit (de)
- Identifiability (en)
- Identification (statistiques) (fr)
- 可辨识性 (zh)
|
rdfs:comment
| - En statistiques et en économétrie, l'identification (ou identifiabilité) est une propriété d'un modèle statistique. En statistiques, on dit qu'un modèle est identifiable s'il est possible d'apprendre la vraie valeur des paramètres à partir d'un nombre infini d'observations. (fr)
- 在 统计学中,可辨识是一个能够更为准确推断的模型必须满足的属性。 一个模型是可辨识的,如果它在理论上能通过无限的观测结果学习到的真正该模型背后参数的真实值。 在数学上,这相当于说基于这些观测结果的不同的参数值必须产生不同的概率分布。 通常情况下,模型只是在某些情况下是可识别的,这些情况的限定条件被称为识别条件。 一个模型是不可识别的,如果:两个或两个以上的参数化是观察等价的。 在某些情况下,即使一个模型是不可识别的,它仍然可能学习到某些特定模型参数子集的真实值。 在这种情况下,我们称该模型是部分地可识别的。 在其他情况下,模型可能可以学习到参数空间中一定有限区域的真的参数值,在这种情况下,该模型是集合可识别的。 除了严格的理论探索模型的属性,当使用可识别性分析使用实验数据集检验模型时,可识别性可以在一个更宽泛的范围内被提及。 (zh)
- Als Identifizierbarkeit eines Modells bezeichnet man in der Statistik und insbesondere in der Ökonometrie die Eigenschaft von Schätzmodellen, dass Inferenzstatistik auf sie anwendbar ist. Ein Modell ist dann identifizierbar, wenn es theoretisch möglich ist, die dem Modell zugrundeliegenden wahren Werte zu ermitteln, indem unendlich viele Beobachtungen gemacht wurden (gezogen wurden). Mathematisch bedeutet das, dass unterschiedliche Werte der Parameter des Modells unterschiedliche Wahrscheinlichkeitsfunktionen der beobachtbaren Variablen erzeugen. (de)
- In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions. (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - Als Identifizierbarkeit eines Modells bezeichnet man in der Statistik und insbesondere in der Ökonometrie die Eigenschaft von Schätzmodellen, dass Inferenzstatistik auf sie anwendbar ist. Ein Modell ist dann identifizierbar, wenn es theoretisch möglich ist, die dem Modell zugrundeliegenden wahren Werte zu ermitteln, indem unendlich viele Beobachtungen gemacht wurden (gezogen wurden). Mathematisch bedeutet das, dass unterschiedliche Werte der Parameter des Modells unterschiedliche Wahrscheinlichkeitsfunktionen der beobachtbaren Variablen erzeugen. In der Praxis, wo endlich viele Beobachtungen vorliegen, ist die Identifizierbarkeit eines Modells durch die Anzahl der zu schätzenden Parameter, die Anzahl der Beobachtungen und Anzahl der damit verbundenen Freiheitsgrade beschränkt. Multikollinearität führt zu nicht identifizierbaren Parametern. (de)
- In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions. A model that fails to be identifiable is said to be non-identifiable or unidentifiable: two or more parametrizations are observationally equivalent. In some cases, even though a model is non-identifiable, it is still possible to learn the true values of a certain subset of the model parameters. In this case we say that the model is partially identifiable. In other cases it may be possible to learn the location of the true parameter up to a certain finite region of the parameter space, in which case the model is set identifiable. Aside from strictly theoretical exploration of the model properties, identifiability can be referred to in a wider scope when a model is tested with experimental data sets, using identifiability analysis. (en)
- En statistiques et en économétrie, l'identification (ou identifiabilité) est une propriété d'un modèle statistique. En statistiques, on dit qu'un modèle est identifiable s'il est possible d'apprendre la vraie valeur des paramètres à partir d'un nombre infini d'observations. (fr)
- 在 统计学中,可辨识是一个能够更为准确推断的模型必须满足的属性。 一个模型是可辨识的,如果它在理论上能通过无限的观测结果学习到的真正该模型背后参数的真实值。 在数学上,这相当于说基于这些观测结果的不同的参数值必须产生不同的概率分布。 通常情况下,模型只是在某些情况下是可识别的,这些情况的限定条件被称为识别条件。 一个模型是不可识别的,如果:两个或两个以上的参数化是观察等价的。 在某些情况下,即使一个模型是不可识别的,它仍然可能学习到某些特定模型参数子集的真实值。 在这种情况下,我们称该模型是部分地可识别的。 在其他情况下,模型可能可以学习到参数空间中一定有限区域的真的参数值,在这种情况下,该模型是集合可识别的。 除了严格的理论探索模型的属性,当使用可识别性分析使用实验数据集检验模型时,可识别性可以在一个更宽泛的范围内被提及。 (zh)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |