In mathematics, an integer-valued function is a function whose values are integers. In other words, it is a function that assigns an integer to each member of its domain. Floor and ceiling functions are examples of an integer-valued function of a real variable, but on real numbers and generally, on (non-disconnected) topological spaces integer-valued functions are not especially useful. Any such function on a connected space either has discontinuities or is constant. On the other hand, on discrete and other totally disconnected spaces integer-valued functions have roughly the same importance as real-valued functions have on non-discrete spaces.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Zahlenfunktion (de)
- Integer-valued function (en)
|
rdfs:comment
| - Eine Zahlenfunktion ist eine Funktion, die Tupel von natürlichen Zahlen auf natürliche Zahlen abbildet. Der Begriff wird hauptsächlich in der theoretischen Informatik in der Berechenbarkeitstheorie verwendet und dient der Abgrenzung zu Funktionen über anderen Mengen, insbesondere Wortfunktionen. Zum Beweis der Berechenbarkeit einerZahlenfunktion dienen mathematische Modelle wie die Registermaschine, die While-Berechenbarkeit oder dieμ-Rekursion. (de)
- In mathematics, an integer-valued function is a function whose values are integers. In other words, it is a function that assigns an integer to each member of its domain. Floor and ceiling functions are examples of an integer-valued function of a real variable, but on real numbers and generally, on (non-disconnected) topological spaces integer-valued functions are not especially useful. Any such function on a connected space either has discontinuities or is constant. On the other hand, on discrete and other totally disconnected spaces integer-valued functions have roughly the same importance as real-valued functions have on non-discrete spaces. (en)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - Eine Zahlenfunktion ist eine Funktion, die Tupel von natürlichen Zahlen auf natürliche Zahlen abbildet. Der Begriff wird hauptsächlich in der theoretischen Informatik in der Berechenbarkeitstheorie verwendet und dient der Abgrenzung zu Funktionen über anderen Mengen, insbesondere Wortfunktionen. Zum Beweis der Berechenbarkeit einerZahlenfunktion dienen mathematische Modelle wie die Registermaschine, die While-Berechenbarkeit oder dieμ-Rekursion. (de)
- In mathematics, an integer-valued function is a function whose values are integers. In other words, it is a function that assigns an integer to each member of its domain. Floor and ceiling functions are examples of an integer-valued function of a real variable, but on real numbers and generally, on (non-disconnected) topological spaces integer-valued functions are not especially useful. Any such function on a connected space either has discontinuities or is constant. On the other hand, on discrete and other totally disconnected spaces integer-valued functions have roughly the same importance as real-valued functions have on non-discrete spaces. Any function with natural, or non-negative integer values is a partial case of integer-valued function. (en)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |