About: Isotropic quadratic form     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatQuadraticForms, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/8aheqpokFS

In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. A quadratic form q on a finite-dimensional real vector space V is anisotropic if and only if q is a definite form:

AttributesValues
rdf:type
rdfs:label
  • Izotropa kvadrata formo (eo)
  • Isotropic quadratic form (en)
  • 等方二次形式 (ja)
  • 迷向二次型 (zh)
rdfs:comment
  • 数学における等方二次形式(とうほうにじけいしき、英: isotropic quadratic form)は、ヌルベクトル(それに代入して零になるような非零ベクトル)を持つような二次形式を言う。等方的でない二次形式は非等方的 (anisotropic) と言う。 (ja)
  • 在数学中,一个域 F 上的二次型称为迷向(isotropic)的如果在一个非零向量上取值为零。不然称为非迷向(anisotropic)的。更具体地,如果 q 是域 F 上向量空间 V 上一个二次型,则 V 中一个非零向量 v 称为迷向的如果 q(v)=0。一个二次型是迷向的当且仅当对这个二次型存在非零迷向向量。 假设 (V,q) 是二次空间,W 是一个子空间。如果 W 中所有向量都是迷向的,称之为 V 的一个迷向子空间;如果不存在任何非零迷向向量则称之为非迷向子空间。一个二次空间的迷向指标(isotropy index)是迷向子空间的最大维数。 (zh)
  • En matematiko, kvadrata formo super kampo F estas dirita al esti izotropa se estas ne-nula vektoro sur kiu ĝia valoro estas nulo. Alie la kvadrata formo estas neizotropa. Se q estas kvadrata formo sur vektora spaco V super F, tiam ne-nula vektoro v en V estas dirita al esti izotropa se q(v)=0. Kvadrata formo estas izotropa se kaj nur en V ekzistas ne-nula izotropa vektoro por la kvadrata formo. (eo)
  • In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. A quadratic form q on a finite-dimensional real vector space V is anisotropic if and only if q is a definite form: (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En matematiko, kvadrata formo super kampo F estas dirita al esti izotropa se estas ne-nula vektoro sur kiu ĝia valoro estas nulo. Alie la kvadrata formo estas neizotropa. Se q estas kvadrata formo sur vektora spaco V super F, tiam ne-nula vektoro v en V estas dirita al esti izotropa se q(v)=0. Kvadrata formo estas izotropa se kaj nur en V ekzistas ne-nula izotropa vektoro por la kvadrata formo. Estu (V, q) kvadrata spaco kaj W estu ĝia . Tiam W estas nomata kiel izotropa subspaco de V se ĉiuj vektoroj en ĝi estas izotropaj, kaj neizotropa subspaco se ĝi enhavas neniun (ne-nulan) izotropaj vektoroj. La izotropeca indekso de kvadrata spaco estas la maksimumo de la dimensioj de la izotropaj subspacoj. (eo)
  • In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V. Then W is called an isotropic subspace of V if some vector in it is isotropic, a totally isotropic subspace if all vectors in it are isotropic, and an anisotropic subspace if it does not contain any (non-zero) isotropic vectors. The isotropy index of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces. A quadratic form q on a finite-dimensional real vector space V is anisotropic if and only if q is a definite form: * either q is positive definite, i.e. q(v) > 0 for all non-zero v in V ; * or q is negative definite, i.e. q(v) < 0 for all non-zero v in V. More generally, if the quadratic form is non-degenerate and has the signature (a, b), then its isotropy index is the minimum of a and b. An important example of an isotropic form over the reals occurs in pseudo-Euclidean space. (en)
  • 数学における等方二次形式(とうほうにじけいしき、英: isotropic quadratic form)は、ヌルベクトル(それに代入して零になるような非零ベクトル)を持つような二次形式を言う。等方的でない二次形式は非等方的 (anisotropic) と言う。 (ja)
  • 在数学中,一个域 F 上的二次型称为迷向(isotropic)的如果在一个非零向量上取值为零。不然称为非迷向(anisotropic)的。更具体地,如果 q 是域 F 上向量空间 V 上一个二次型,则 V 中一个非零向量 v 称为迷向的如果 q(v)=0。一个二次型是迷向的当且仅当对这个二次型存在非零迷向向量。 假设 (V,q) 是二次空间,W 是一个子空间。如果 W 中所有向量都是迷向的,称之为 V 的一个迷向子空间;如果不存在任何非零迷向向量则称之为非迷向子空间。一个二次空间的迷向指标(isotropy index)是迷向子空间的最大维数。 (zh)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is rdfs:seeAlso of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software