In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. A quadratic form q on a finite-dimensional real vector space V is anisotropic if and only if q is a definite form:
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Izotropa kvadrata formo (eo)
- Isotropic quadratic form (en)
- 等方二次形式 (ja)
- 迷向二次型 (zh)
|
rdfs:comment
| - 数学における等方二次形式(とうほうにじけいしき、英: isotropic quadratic form)は、ヌルベクトル(それに代入して零になるような非零ベクトル)を持つような二次形式を言う。等方的でない二次形式は非等方的 (anisotropic) と言う。 (ja)
- 在数学中,一个域 F 上的二次型称为迷向(isotropic)的如果在一个非零向量上取值为零。不然称为非迷向(anisotropic)的。更具体地,如果 q 是域 F 上向量空间 V 上一个二次型,则 V 中一个非零向量 v 称为迷向的如果 q(v)=0。一个二次型是迷向的当且仅当对这个二次型存在非零迷向向量。 假设 (V,q) 是二次空间,W 是一个子空间。如果 W 中所有向量都是迷向的,称之为 V 的一个迷向子空间;如果不存在任何非零迷向向量则称之为非迷向子空间。一个二次空间的迷向指标(isotropy index)是迷向子空间的最大维数。 (zh)
- En matematiko, kvadrata formo super kampo F estas dirita al esti izotropa se estas ne-nula vektoro sur kiu ĝia valoro estas nulo. Alie la kvadrata formo estas neizotropa. Se q estas kvadrata formo sur vektora spaco V super F, tiam ne-nula vektoro v en V estas dirita al esti izotropa se q(v)=0. Kvadrata formo estas izotropa se kaj nur en V ekzistas ne-nula izotropa vektoro por la kvadrata formo. (eo)
- In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. A quadratic form q on a finite-dimensional real vector space V is anisotropic if and only if q is a definite form: (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - En matematiko, kvadrata formo super kampo F estas dirita al esti izotropa se estas ne-nula vektoro sur kiu ĝia valoro estas nulo. Alie la kvadrata formo estas neizotropa. Se q estas kvadrata formo sur vektora spaco V super F, tiam ne-nula vektoro v en V estas dirita al esti izotropa se q(v)=0. Kvadrata formo estas izotropa se kaj nur en V ekzistas ne-nula izotropa vektoro por la kvadrata formo. Estu (V, q) kvadrata spaco kaj W estu ĝia . Tiam W estas nomata kiel izotropa subspaco de V se ĉiuj vektoroj en ĝi estas izotropaj, kaj neizotropa subspaco se ĝi enhavas neniun (ne-nulan) izotropaj vektoroj. La izotropeca indekso de kvadrata spaco estas la maksimumo de la dimensioj de la izotropaj subspacoj. (eo)
- In mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V. Then W is called an isotropic subspace of V if some vector in it is isotropic, a totally isotropic subspace if all vectors in it are isotropic, and an anisotropic subspace if it does not contain any (non-zero) isotropic vectors. The isotropy index of a quadratic space is the maximum of the dimensions of the totally isotropic subspaces. A quadratic form q on a finite-dimensional real vector space V is anisotropic if and only if q is a definite form:
* either q is positive definite, i.e. q(v) > 0 for all non-zero v in V ;
* or q is negative definite, i.e. q(v) < 0 for all non-zero v in V. More generally, if the quadratic form is non-degenerate and has the signature (a, b), then its isotropy index is the minimum of a and b. An important example of an isotropic form over the reals occurs in pseudo-Euclidean space. (en)
- 数学における等方二次形式(とうほうにじけいしき、英: isotropic quadratic form)は、ヌルベクトル(それに代入して零になるような非零ベクトル)を持つような二次形式を言う。等方的でない二次形式は非等方的 (anisotropic) と言う。 (ja)
- 在数学中,一个域 F 上的二次型称为迷向(isotropic)的如果在一个非零向量上取值为零。不然称为非迷向(anisotropic)的。更具体地,如果 q 是域 F 上向量空间 V 上一个二次型,则 V 中一个非零向量 v 称为迷向的如果 q(v)=0。一个二次型是迷向的当且仅当对这个二次型存在非零迷向向量。 假设 (V,q) 是二次空间,W 是一个子空间。如果 W 中所有向量都是迷向的,称之为 V 的一个迷向子空间;如果不存在任何非零迷向向量则称之为非迷向子空间。一个二次空间的迷向指标(isotropy index)是迷向子空间的最大维数。 (zh)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is rdfs:seeAlso
of | |
is Link from a Wikipage to another Wikipage
of | |