About: Iwasawa decomposition     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Matrix108267640, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/AEi4da3Wx8

In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.

AttributesValues
rdf:type
rdfs:label
  • Iwasawa-Zerlegung (de)
  • Iwasawa decomposition (en)
  • Décomposition d'Iwasawa (fr)
  • 이와사와 분해 (ko)
  • 岩泽分解 (zh)
rdfs:comment
  • Die Iwasawa-Zerlegung halbeinfacher Lie-Gruppen verallgemeinert die Tatsache, dass sich jede quadratische Matrix auf eindeutige Weise als Produkt aus einer orthogonalen Matrix und einer oberen Dreiecksmatrix darstellen lässt. Sie ist nach Kenkichi Iwasawa (1949) benannt, der sie für reelle halbeinfache Liegruppen einführte. (de)
  • In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method. (en)
  • La décomposition d'Iwasawa d'un groupe de Lie semi-simple est une généralisation de la décomposition d'un élément du groupe spécial linéaire SL(n, ℝ) comme produit KAN (de façon unique) d'un élément K du groupe spécial orthogonal SO(n, ℝ), d'une matrice diagonale A à coefficients diagonaux positifs (et dont le produit est nécessairement égal à 1), et d'une matrice triangulaire supérieure N dont les coefficients diagonaux valent 1. (fr)
  • 리 군 이론에서, 이와사와 분해([岩澤]分解, 영어: Iwasawa decomposition)는 그람-슈미트 과정을 반단순 리 군에 일반화하여, 리 군의 원소를 멱영 성분·가환 성분·콤팩트 성분으로 나누는 분해이다.:197–204 (ko)
  • 数学中,的岩泽分解 KAN 推广了实方阵能写成一个正交矩阵和上三角矩阵的乘积(格拉姆-施密特正交化之推论)。以创立者日本数学家岩泽健吉命名。 (zh)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
first
  • A.S. (en)
  • A.I. (en)
id
  • Iwasawa_decomposition&oldid=21877 (en)
last
  • Fedenko (en)
  • Shtern (en)
title
  • Iwasawa decomposition (en)
has abstract
  • Die Iwasawa-Zerlegung halbeinfacher Lie-Gruppen verallgemeinert die Tatsache, dass sich jede quadratische Matrix auf eindeutige Weise als Produkt aus einer orthogonalen Matrix und einer oberen Dreiecksmatrix darstellen lässt. Sie ist nach Kenkichi Iwasawa (1949) benannt, der sie für reelle halbeinfache Liegruppen einführte. (de)
  • In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method. (en)
  • La décomposition d'Iwasawa d'un groupe de Lie semi-simple est une généralisation de la décomposition d'un élément du groupe spécial linéaire SL(n, ℝ) comme produit KAN (de façon unique) d'un élément K du groupe spécial orthogonal SO(n, ℝ), d'une matrice diagonale A à coefficients diagonaux positifs (et dont le produit est nécessairement égal à 1), et d'une matrice triangulaire supérieure N dont les coefficients diagonaux valent 1. (fr)
  • 리 군 이론에서, 이와사와 분해([岩澤]分解, 영어: Iwasawa decomposition)는 그람-슈미트 과정을 반단순 리 군에 일반화하여, 리 군의 원소를 멱영 성분·가환 성분·콤팩트 성분으로 나누는 분해이다.:197–204 (ko)
  • 数学中,的岩泽分解 KAN 推广了实方阵能写成一个正交矩阵和上三角矩阵的乘积(格拉姆-施密特正交化之推论)。以创立者日本数学家岩泽健吉命名。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software