About: Kadison–Singer problem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Disease, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/VYHs5aTwK

In mathematics, the Kadison–Singer problem, posed in 1959, was a problem in functional analysis about whether certain extensions of certain linear functionals on certain C*-algebras were unique. The uniqueness was proved in 2013.

AttributesValues
rdf:type
rdfs:label
  • Kadison-Singer-Problem (de)
  • Kadison–Singer problem (en)
  • 卡迪森-辛格問題 (zh)
rdfs:comment
  • Das Kadison-Singer-Problem von Richard Kadison und Isadore Singer ist ein 1959 aufgestelltes Problem in der Theorie der Operatoralgebren. Es fragt danach, ob bestimmte Erweiterungen von linearen Funktionalen auf bestimmten Operatoralgebren (bestimmte C*-Algebren) eindeutig sind. Es wurde 2013 von Adam W. Marcus, Daniel Spielman und Nikhil Srivastava gelöst. (de)
  • In mathematics, the Kadison–Singer problem, posed in 1959, was a problem in functional analysis about whether certain extensions of certain linear functionals on certain C*-algebras were unique. The uniqueness was proved in 2013. (en)
  • 数学上,卡迪森-辛格問題(英語:Kadison–Singer problem)於1959年提出,有關泛函分析,問某個特定C*-代数上的任意線性泛函,延拓到另一個較大的C*-代數時,是僅有唯一的可能,抑或可以有多個不同的延拓。2013年,問題得到解決,答案為肯定(即唯一)。 問題源出1940年代保罗·狄拉克對量子力学理論基礎的研究。1959年,與艾沙道尔·辛格給出嚴格的問題敍述。此後,發現純數學、應用數學、工程學、電腦科學等學科的多個未解問題,皆與卡迪森-辛格問題等價。卡迪森、辛格,以及日後多個作者,都相信問題答案為否定(即不唯一),然而於2013年,、、合著論文給出肯定的答案。翌年,三人因此獲頒發。 (zh)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Das Kadison-Singer-Problem von Richard Kadison und Isadore Singer ist ein 1959 aufgestelltes Problem in der Theorie der Operatoralgebren. Es fragt danach, ob bestimmte Erweiterungen von linearen Funktionalen auf bestimmten Operatoralgebren (bestimmte C*-Algebren) eindeutig sind. Es wurde 2013 von Adam W. Marcus, Daniel Spielman und Nikhil Srivastava gelöst. (de)
  • In mathematics, the Kadison–Singer problem, posed in 1959, was a problem in functional analysis about whether certain extensions of certain linear functionals on certain C*-algebras were unique. The uniqueness was proved in 2013. The statement arose from work on the foundations of quantum mechanics done by Paul Dirac in the 1940s and was formalized in 1959 by Richard Kadison and Isadore Singer. The problem was subsequently shown to be equivalent to numerous open problems in pure mathematics, applied mathematics, engineering and computer science. Kadison, Singer, and most later authors believed the statement to be false, but, in 2013, it was proven true by Adam Marcus, Daniel Spielman and Nikhil Srivastava, who received the 2014 Pólya Prize for the achievement. The solution was made possible by a reformulation provided by Joel Anderson, who showed in 1979 that his "paving conjecture", which only involves operators on finite-dimensional Hilbert spaces, is equivalent to the Kadison–Singer problem. Nik Weaver provided another reformulation in a finite-dimensional setting, and this version was proved true using random polynomials. (en)
  • 数学上,卡迪森-辛格問題(英語:Kadison–Singer problem)於1959年提出,有關泛函分析,問某個特定C*-代数上的任意線性泛函,延拓到另一個較大的C*-代數時,是僅有唯一的可能,抑或可以有多個不同的延拓。2013年,問題得到解決,答案為肯定(即唯一)。 問題源出1940年代保罗·狄拉克對量子力学理論基礎的研究。1959年,與艾沙道尔·辛格給出嚴格的問題敍述。此後,發現純數學、應用數學、工程學、電腦科學等學科的多個未解問題,皆與卡迪森-辛格問題等價。卡迪森、辛格,以及日後多個作者,都相信問題答案為否定(即不唯一),然而於2013年,、、合著論文給出肯定的答案。翌年,三人因此獲頒發。 馬-斯-斯三氏皆為電腦科學家,本來並非研究C*-代數。馬庫斯甚至稱自己在解決該問題後,「仍无法用C*-代数的语言来描述它」。解決問題的轉捩點,是喬爾·安德森(Joel Anderson)將其重寫成不牽涉C*-代數理論的等價形式。安德森於1979年證明,其「鋪砌猜想」(英語:paving conjecture)與卡迪森-辛格問題等價。該猜想僅牽涉有限維希爾伯特空間的算子,而相比之下,原問題的空間則是無窮維。此後,亦有其他學者,如尼克·威佛(Nik Weaver),在有限維空間中,給出其他等價問法。威佛的版本吸引了馬-斯-斯三氏研究。而此版本用交織多項式族(英語:interlacing family)獲解決。 (zh)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 72 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software