rdfs:comment
| - مصفوفة لابلاس في علم المخططات (بالإنجليزية:Laplacian Matrix) هي مصفوفة تعطي العلاقة بين الرؤوس (العُقَد) والأضلاع التي تربط بينها. تستخدم المصفوفة أيضا لحساب عدد تفرعات ما يعرف بشجرة الإمتداد وتعتبر تطبيقا رياضيا متقطعا لمعامل لابلاس. يتم استخدام المتجهات الذاتية المٌرادفة للقيم الذاتية الصغرى لمصفوفة لابلاس في عمليات تصنيف البيانات (spectral clustering). (ar)
- Die Laplace-Matrix ist in der Graphentheorie eine Matrix, welche die Beziehungen der Knoten und Kanten eines Graphen beschreibt.Sie wird unter anderem zur Berechnung der Anzahl der Spannbäume und zur Abschätzung der Expansivität regulärer Graphen benutzt. Sie ist eine diskrete Version des Laplace-Operators. Laplace-Matrizen und insbesondere ihre zu kleinen Eigenwerten gehörenden Eigenvektoren werden beim Spectral Clustering, einem Verfahren der Clusteranalyse, verwendet. (de)
- En teoría de grafos la matriz laplaciana — también denominada matriz de admitancia o matriz de Kirchhoff — es una representación matricial de un grafo. Otro tipo de representación matricial la proporciona la matriz de adyacencia, pero la matriz laplaciana es ideal para realizar la teoría espectral de grafos. (es)
- En théorie des graphes, une matrice laplacienne, ou matrice de Laplace, est une matrice représentant un graphe. (fr)
- 그래프 이론에서 그래프 라플라스 연산자(graph Laplace演算子, 영어: graph Laplacian operator)는 그래프의 꼭짓점들로 생성되는 힐베르트 공간 위에 정의되는 유계 작용소이다.:279–306, Chapter 13 (ko)
- グラフ理論の数学的分野において、ラプラシアン行列(ラプラシアンぎょうれつ、英: Laplacian matrix)は、グラフの行列表示(行列表現)である。アドミタンス行列(admittance matrix)、キルヒホッフ行列(Kirchhoff matrix)、離散ラプラシアン(discrete Laplacian)、またはラプラス行列と呼ばれることもある。ラプラシアン行列はグラフの多くの有用な性質を探るために使うことができる。と一緒に、任意のグラフについての全域木の数を計算するために使うことができる。グラフの最疎カットはによってそのラプラシアンの2番目に小さい固有値を使って近似することができる 。また、を構築するためにも使うことができる。これは、様々な機械学習応用のために有用かもしれない。 (ja)
- Dato un grafo semplice G con n vertici, la sua matrice Laplaciana è definita come: dove D è la matrice di grado e A è la matrice delle adiacenze del grafo. In caso di , sia il numero di archi in uscita o in entrata può essere usato. Dalla definizione segue che: dove deg(vi) è il grado del vertice i. (it)
- Матрица Кирхгофа — одно из представлений конечного графа с помощью матрицы. Матрица Кирхгофа представляет дискретный оператор Лапласа для графа. Она используется для подсчета остовных деревьев данного графа (матричная теорема о деревьях), а также в спектральной теории графов. (ru)
- No campo matemático da teoria dos grafos, a matriz laplaciana, às vezes chamada matriz de admitância, matriz Kirchhoff ou laplaciano discreto, é uma representação matricial de um grafo . A matriz laplaciana pode ser usada para encontrar muitas propriedades úteis de um grafo. Juntamente com o teorema de Kirchhoff, ela pode ser usada para calcular o número de árvores de abrangência para um determinado grafo. O corte mais esparso de um grafo pode ser aproximado através do segundo menor autovalor de seu Laplaciano pela desigualdade de Cheeger . Também pode ser utilizada para construir incorporações de baixa dimensão, o que pode ser útil para uma variedade de aplicativos de aprendizado de máquina . (pt)
- Inom grafteorin är en laplacematris en matrisrepresentation av en graf och kan användas för att finna många egenskaper hos grafen. Tillsammans med kan den användas för att beräkna antalet uppspännande träd för en given graf. Laplacematrisen är den för en ändligtdimensionell graf. Den är uppkallad efter Pierre Simon de Laplace. Den kallas även kirchhoffmatris efter Gustav Kirchhoff. (sv)
- Матриця Кірхгофа (англ. Laplacian matrix) — один з методів подання графа за допомогою матриці. Матриця Кірхгофа використовується для підрахунку кістякових дерев графа, а також у спектральній теорії графів. (uk)
- 在图论中,调和矩阵(harmonic matrix),也称拉普拉斯矩阵或拉氏矩阵(Laplacian matrix)、离散拉普拉斯(discrete Laplacian),是图的矩阵表示。 调和矩阵也是拉普拉斯算子的离散化。换句话说,调和矩阵的缩放极限是拉普拉斯算子。它在机器学习和物理学中有很多应用。 (zh)
- In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method. (en)
|