About: Lie algebra cohomology     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Thinking105770926, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/AAu4oCh66o

In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg to coefficients in an arbitrary .

AttributesValues
rdf:type
rdfs:label
  • Lie-Algebren-Kohomologie (de)
  • Lie algebra cohomology (en)
  • 리 대수 코호몰로지 (ko)
  • リー環のコホモロジー (ja)
  • Liealgebrakohomologi (sv)
  • 李代数上同调 (zh)
rdfs:comment
  • In der Mathematik ist die Lie-Algebren-Kohomologie ein technisches Hilfsmittel, welches insbesondere in Differentialgeometrie, Mathematischer Physik und der Theorie der Lie-Gruppen Anwendung findet. Sie wird definiert als Kohomologie des Koszul-Komplexes. Für kompakte Lie-Gruppen ist die algebraisch definierte Lie-Algebren-Kohomologie der Lie-Algebra isomorph zur De-Rham-Kohomologie der Lie-Gruppe. (de)
  • In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg to coefficients in an arbitrary . (en)
  • 数学において、リー環のコホモロジー(英: Lie algebra cohomology)とは、リー環に対するコホモロジー論である。それは Chevalley and Eilenberg によって、コンパクトリー群の位相空間としてのコホモロジーの代数的構成を与えるために、定義された。上の論文では、と呼ばれる鎖複体がリー環上の加群に対して定義され、そのコホモロジーが普通の意味で取られる。 (ja)
  • 리 군론에서 리 대수 코호몰로지(Lie代數cohomology, 영어: Lie algebra cohomology)는 리 대수 위에 정의되는 코호몰로지 이론이다. Ext 함자의 특수한 경우이다. (ko)
  • Inom matematiken är Lie algebrakohomologi en kohomologiteori för Liealgebror. Den definierades i och Eilenberg för att ge en algebraisk konstruktion av kohomologin av det underliggande topologiska rummet av kompakta Liegrupper. I artikeln ovan definieras ett specifikt komplext, , för en modul över en Liealgebra och dess kohomologi definieras på de normala viset. (sv)
  • 在数学中,李代数上同调是李代数的一种上同调理论,由谢瓦莱和艾伦伯格为了对紧李群的拓扑空间的上同调进行代数构造而建立。在上文提及的论文中,一个特定的被称作的特殊复形,在李代数的模上定义,而其上同调则以一般形式被构造。 (zh)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
first
  • Samuel (en)
  • Claude (en)
last
  • Chevalley (en)
  • Eilenberg (en)
title
  • An introduction to Lie algebra cohomology (en)
urlname
  • An_introduction_to_Lie_algebra_cohomology (en)
year
has abstract
  • In der Mathematik ist die Lie-Algebren-Kohomologie ein technisches Hilfsmittel, welches insbesondere in Differentialgeometrie, Mathematischer Physik und der Theorie der Lie-Gruppen Anwendung findet. Sie wird definiert als Kohomologie des Koszul-Komplexes. Für kompakte Lie-Gruppen ist die algebraisch definierte Lie-Algebren-Kohomologie der Lie-Algebra isomorph zur De-Rham-Kohomologie der Lie-Gruppe. (de)
  • In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg to coefficients in an arbitrary . (en)
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software