About: Linear regression     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:ProgrammingLanguage, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3c5Addc6Fm

In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.

AttributesValues
rdf:type
rdfs:label
  • انحدار خطي (ar)
  • Regressió lineal (ca)
  • Lineární regrese (cs)
  • Lineare Regression (de)
  • Γραμμική παλινδρόμηση (el)
  • Regresión lineal (es)
  • Karratu txikienen erregresio zuzen (eu)
  • Régression linéaire (fr)
  • Regresi linear (in)
  • Regressione lineare (it)
  • Linear regression (en)
  • 線形回帰 (ja)
  • 선형 회귀 (ko)
  • Regresja liniowa (pl)
  • Regressão linear (pt)
  • Линейная регрессия (ru)
  • Multipel linjär regression (sv)
  • Лінійна регресія (uk)
  • 線性回歸 (zh)
rdfs:comment
  • الانحدار الخطي أو نموذج الانحدار الخطي أو النموذج الخطي في الإحصاء، هو نموذج إحصائي يستخدم في تفسير متغير عبر متغير آخر (أو مجموعة من المتغيرات ) وفق دالة خطية. يسمى المتغير بالتابع والمتغيرات بالمتغيرات المستقلة أو المفسرة، بمعنى أنها تفسر، إحصائيا، تغير المتغير التابع. (ar)
  • Die lineare Regression (kurz: LR) ist ein Spezialfall der Regressionsanalyse, also ein statistisches Verfahren, mit dem versucht wird, eine beobachtete abhängige Variable durch eine oder mehrere unabhängige Variablen zu erklären. Bei der linearen Regression wird dabei ein lineares Modell (kurz: LM) angenommen. Es werden also nur solche Zusammenhänge herangezogen, bei denen die abhängige Variable eine Linearkombination der Regressionskoeffizienten (aber nicht notwendigerweise der unabhängigen Variablen) ist. Der Begriff Regression bzw. Regression zur Mitte wurde vor allem durch den Statistiker Francis Galton geprägt. Sie ist optimal wenn die Summe der Fehlerquadrate niedrig ist (de)
  • Estatistikan, karratu txikienen erregresio zuzena karratu txikienen erregresioz lortutako zuzena adierazten du. Aldagai independente bakarreko zuzena aztertuko da artikulu honetan, erregresio bakuna deiturikoa alegia. Aldagai independente bi edo gehiago direnean (erregresio anizkoitza deiturikoa), karratu txikienen erregresioaren bitartez, erregresio zuzena (bi aldagai independente) edo erregresio planoa (hiru aldagai independente edo gehiago) nola eratu eta aztertzen den jakiteko, ikus . (eu)
  • Dalam dunia matematika, tentu sudah tak asing lagi mendengar kata statistik. Pada statistik, regresi linear adalah suatu pendekatan untuk memantapkan hubungan antara satu atau lebih variabel dependen (regresi linear sederhana) dan juga variabel independen (regresi linear banyak). Salah satu aplikasi dari regresi linear adalah untuk melakukan prediksi berdasarkan data-data yang telah dimiliki sebelumnya. Dengan asumsi hubungan di antara variabel variabel tersebut, dapat didekati oleh suatu persamaan garis lurus, maka model yang mendekati hubungan antar variabel di data tersebut disebut sebagai pemantapan regresi linear. (in)
  • 線形回帰(せんけいかいき、英: linear regression)とは、説明変数(独立変数ともいう)に対して目的変数(従属変数、あるいは反応変数ともいう)が線形またはそれから近い値で表される状態。 線形回帰は統計学における回帰分析の一種であり、非線形回帰と対比される。また線形回帰のうち、説明変数が1つの場合を単純線形回帰、2つ以上の場合を重回帰と呼ばれる。 (ja)
  • En estadística la regressió lineal o ajust lineal és un mètode estadístic que modelitza la relació entre una variable dependent Y, les variables independents X i i un terme aleatori ε, per trobar una funció lineal que s'ajusti al màxim a la distribució de punts generada per una variable de dues dimensions. Aquest model es pot expressar com: (ca)
  • Lineární regrese je matematická metoda používaná pro proložení souboru bodů v grafu přímkou. O bodech reprezentujících měřená data se předpokládá, že jejich x-ové souřadnice jsou přesné, zatímco ypsilonové souřadnice mohou být zatíženy náhodnou chybou, přičemž předpokládáme, že závislost y na x lze graficky vyjádřit přímkou. Pokud měřené body proložíme přímkou, tak při odečítání z grafu bude mezi ypsilonovou hodnotou měřeného bodu a ypsilonovou hodnotou ležící na přímce odchylka. Podstatou lineární regrese je nalezení takové přímky, aby součet druhých mocnin těchto odchylek byl co nejmenší. Lineární regresi lze zobecnit i pro prokládání jinou funkcí než přímkou. Termín lineární regrese proto může označovat dvě částečně odlišné věci: (cs)
  • Στη στατιστική, η γραμμική παλινδρόμηση είναι μια προσέγγιση για τη μοντελοποίηση της σχέσης μεταξύ μιας βαθμωτής εξαρτημένης μεταβλητής Υ και μία ή περισσότερες επεξηγηματικές μεταβλητές (ή ανεξάρτητη μεταβλητή) συμβολίζεται X. Περίπτωση μιας επεξηγηματικής μεταβλητής ονομάζεται απλή γραμμική παλινδρόμηση. Για περισσότερες από μία επεξηγηματικές μεταβλητές, η διαδικασία ονομάζεται πολλαπλή γραμμική παλινδρόμηση.(Ο όρος αυτός θα πρέπει να διακρίνεται από πολυμεταβλητή γραμμική παλινδρόμηση, όπου πολλαπλά προβλέπουν συσχέτιση με εξαρτημένες μεταβλητές , αντί για μία ενιαία βαθμωτή μεταβλητή.) (el)
  • En estadística, la regresión lineal o ajuste lineal es un modelo matemático usado para aproximar la relación de dependencia entre una variable dependiente , variables independientes con y un término aleatorio . Este método es aplicable en muchas situaciones en las que se estudia la relación entre dos o más variables o predecir un comportamiento, algunas incluso sin relación con la tecnología. En caso de que no se pueda aplicar un modelo de regresión a un estudio, se dice que no hay correlación entre las variables estudiadas. Este modelo puede ser expresado como: donde: (es)
  • In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable. (en)
  • En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x. (fr)
  • La regressione formalizza e risolve il problema di una relazione funzionale tra variabili misurate sulla base di dati campionari estratti da un'ipotetica popolazione infinita. Originariamente Galton utilizzava il termine come sinonimo di correlazione, tuttavia oggi in statistica l'analisi della regressione è associata alla risoluzione del modello lineare. Per la loro versatilità, le tecniche della regressione lineare trovano impiego nel campo delle scienze applicate: astronomia, chimica, geologia, biologia, fisica, ingegneria, medicina, nonché nelle scienze sociali: economia, linguistica, psicologia e sociologia. (it)
  • 통계학에서 선형 회귀(線型回歸, 영어: linear regression)는 종속 변수 y와 한 개 이상의 독립 변수 (또는 설명 변수) X와의 선형 상관 관계를 모델링하는 회귀분석 기법이다. 한 개의 설명 변수에 기반한 경우에는 단순 선형 회귀(simple linear regression), 둘 이상의 설명 변수에 기반한 경우에는 다중 선형 회귀라고 한다. 선형 회귀는 선형 예측 함수를 사용해 회귀식을 모델링하며, 알려지지 않은 파라미터는 데이터로부터 추정한다. 이렇게 만들어진 회귀식을 선형 모델이라고 한다. 선형 회귀는 깊이있게 연구되고 널리 사용된 첫 번째 회귀분석 기법이다. 이는 알려지지 않은 파라미터에 대해 선형 관계를 갖는 모델을 세우는 것이, 비선형 관계를 갖는 모델을 세우는 것보다 용이하기 때문이다. 선형 회귀는 여러 사용 사례가 있지만, 대개 아래와 같은 두 가지 분류 중 하나로 요약할 수 있다. (ko)
  • Regresja liniowa – w modelowaniu statystycznym, metody oparte o liniowe kombinacje zmiennych i parametrów dopasowujących model do danych. Dopasowana linia lub krzywa regresji reprezentuje oszacowaną wartość oczekiwaną zmiennej przy konkretnych wartościach innej zmiennej lub zmiennych W najprostszym przypadku dopasowana jest stała lub funkcja liniowa, na przykład: Zmienna jest tradycyjnie nazywana zmienną objaśnianą lub zależną. Zmienne nazywa się zmiennymi objaśniającymi lub niezależnymi. Zarówno zmienne objaśniane i objaśniające mogą być wielkościami skalarnymi lub wektorami. (pl)
  • Em estatística ou econometria, regressão linear é uma equação para se estimar a condicional (valor esperado) de uma variável y, dados os valores de algumas outras variáveis x. A regressão, em geral, tem como objectivo tratar de um valor que não se consegue estimar inicialmente. (pt)
  • Линейная регрессия (англ. Linear regression) — используемая в статистике регрессионная модель зависимости одной (объясняемой, зависимой) переменной от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) с линейной функцией зависимости. (ru)
  • Inom statistik är multipel linjär regression en teknik med vilken man kan undersöka om det finns ett statistiskt samband mellan en responsvariabel (Y) och två eller flera förklarande variabler (X). Till sitt förfogande har man sammanhörande mätvärden på X- och Y-variablerna, och är intresserad av att undersöka huruvida följande linjära modell kan antas beskriva detta samband: Enkel linjär regression är ett specialfall av multipel linjär regression då man har en Y-variabel och endast en X-variabel: (sv)
  • У статистиці лінійна регресія — це метод моделювання залежності між скалярною змінною y та векторною (у загальному випадку) змінною X. У разі, якщо змінна X також є скаляром, регресію називають простою. При використанні лінійної регресії взаємозв'язок між даними моделюється за допомогою лінійних функцій, а невідомі параметри моделі оцінюються за вхідними даними. Подібно до інших методів регресійного аналізу лінійна регресія повертає розподіл умовної імовірності y в залежності від X, а не розподіл спільної імовірності y та X, що стосується області мультиваріативного аналізу. (uk)
  • 在统计学中,线性回归(英語:linear regression)是利用称为线性回归方程的最小平方函數对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归(multivariable linear regression)。 在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。 线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其未知参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。 线性回归有很多实际用途。分为以下两大类: (zh)
rdfs:seeAlso
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Galton's_correlation_diagram_1875.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Linear_regression.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Anscombe's_quartet_3.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Thiel-Sen_estimator.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Polyreg_scheffe.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Independence_of_Errors_Assumption_for_Linear_Regressions.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Linear_least_squares_example2.png
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 64 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software