About: Local convergence     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Rule105846932, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4582haGEwK

In numerical analysis, an iterative method is called locally convergent if the successive approximations produced by the method are guaranteed to converge to a solution when the initial approximation is already close enough to the solution. Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent. * v * t * e

AttributesValues
rdf:type
rdfs:label
  • Local convergence (en)
  • 局所収束性 (ja)
rdfs:comment
  • In numerical analysis, an iterative method is called locally convergent if the successive approximations produced by the method are guaranteed to converge to a solution when the initial approximation is already close enough to the solution. Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent. * v * t * e (en)
  • 局所収束性(きょくしょしゅうそくせい、英語: locally convergent、局所的収束性)は、数値解析において初期点が最適解に十分に近いときに最適解に十分に収束することが保証された反復法である。ニュートン法のようなおよび非線形方程式系で使用される反復法は一般的に局所収束性だけを満たす。 任意の初期点に対して収束する反復法は大域収束性、大域的収束性に分類される。線型方程式系で使用される反復法は一般的に大域収束性を満たす。 (ja)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In numerical analysis, an iterative method is called locally convergent if the successive approximations produced by the method are guaranteed to converge to a solution when the initial approximation is already close enough to the solution. Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent. * v * t * e (en)
  • 局所収束性(きょくしょしゅうそくせい、英語: locally convergent、局所的収束性)は、数値解析において初期点が最適解に十分に近いときに最適解に十分に収束することが保証された反復法である。ニュートン法のようなおよび非線形方程式系で使用される反復法は一般的に局所収束性だけを満たす。 任意の初期点に対して収束する反復法は大域収束性、大域的収束性に分類される。線型方程式系で使用される反復法は一般的に大域収束性を満たす。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software