About: Mathematical fallacy     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Statement106722453, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/9SDGAiff5i

In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy. There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or deception in the presentation of the proof.

AttributesValues
rdf:type
rdfs:label
  • إثبات خاطئ (ar)
  • Demostració invàlida (ca)
  • Trugschluss (Mathematik) (de)
  • Demostración inválida (es)
  • Pseudo-démonstration d'égalité entre nombres (fr)
  • Fallás Matamaitice (ga)
  • Kekeliruan dalam matematika (in)
  • Sofisma algebrico (it)
  • Mathematical fallacy (en)
  • 誤った数学的推論 (ja)
  • Prova inválida (pt)
  • Математический софизм (ru)
  • 無效證明 (zh)
  • Математичний софізм (uk)
rdfs:comment
  • تطلق عبارة إثبات خاطئ أو مغالطة رياضية أو مبرهنة خاطئة أو إثبات غير مشروع على أي تعبير زائف الإثبات في الرياضيات. تعتمد أغلب طرق البراهين الزائفة أساليب تضليل بارعة تصل في النهاية لعمل خرق فاضح في القانون الرياضي مما يعطي البعض فرصة للتشكيك في صحة الرياضيات. ومع ذلك فإن مثل هذه البراهين تدل على مدى ضرورة الدقة في الرياضيات. يعد كتاب سيوداريا Pseudaria من الكتب القديمة ذات البراهين الخاطئة ويعزى إلى إقليدس. فيما يلي ستتم الإشارة إلى بعض وأكثر البراهين الخاطئة انتشارا. (ar)
  • A les matemàtiques hi ha diverses demostracions amb contradiccions òbvies. Tot i que les demostracions són errònies, els errors són subtils. Aquestes fal·làcies són considerades simples curiositats, però poden ser utilitzades per il·lustrar la importància del rigor en aquesta àrea. (ca)
  • Uaireanta tugtar fallás ar pharadacsa nach bhfuil trioblóideach mar nach bhfuil ann ach briseadh rialach (neamh-chonspóídeach) agus nuair a thuigtear é sin bíónn réiteach ann. Is ábhar maith foghlamtha iad. (ga)
  • Le terme pseudo-démonstration d'égalité renvoie à l'apparente exactitude de démonstrations d'égalités qui à l'évidence sont fausses. Nous nous contenterons ici de regarder le cas d'égalités entre nombres, et nous détaillerons différents vices parmi les plus répandus qui conduisent à ces erreurs. Les méthodes proposées dans cet article se veulent en outre les méthodes les plus courantes, les plus instructives, et dans la mesure du possible, les plus directes. (fr)
  • 証明などの数学的記述において、数学的根拠を欠いた適切でない推測を用いた誤った推論(あやまったすいろん、英: fallacy; 誤謬)から導かれる結論は、一見して有り得ない状況に逢着することも多く、ときには結論だけ取り出せば正しいことがありうるとしても、議論全体としては完全に破綻している。 (ja)
  • 在數學裡,有著許多明顯矛盾的虛假證明存在。即使其證明是有缺陷的,其錯誤——通常是經過設計的——卻常是較難抓摸的。這些謬誤一般都儘止於好奇而已,但可以被用来顯示嚴謹在數學中的重要性。 大多數此類的證明都仰賴著同種錯誤的變形。此一錯誤為採一非單射的函數,以觀察對某些和,會有,來(錯誤地)做出的結論。零除數是此類錯誤的一特例;為將映射至的函數,而其錯誤的一步是起於將的等式做成的結論。相似地,下面證明了的句子也是以函數的同一種錯誤造成的。其錯誤的一步始於有某個和會使得的一正確申論,然後做出了的一錯誤結論。 (zh)
  • In vielen Zweigen der Mathematik gibt es mathematische Trugschlüsse und Fehlschlüsse. Trug- und Fehlschlüsse werden in der Philosophie zusammen als Fallazien ( englisch fallacy, lateinisch fallacia=Täuschung ) bezeichnet. Scheinbeweise sind in der Mathematik Beweise, in denen Fallazien auftreten. Nicht wenige Fehlschlüsse haben in der Geschichte der Mathematik eine Rolle gespielt und waren Ausgangspunkte mathematischer Forschung. In der mathematischen Didaktik gehört das Aufdecken von Scheinbeweisen zu den Problemlöseaktivitäten. Im Folgenden sind Trugschlüsse und Scheinbeweise (de)
  • En matemáticas, hay múltiples demostraciones matemáticas de contradicciones obvias. A pesar de que las demostraciones son erróneas, los errores son sutiles, y la mayor parte de las veces, intencionados. Estas falacias se consideran normalmente meras curiosidades, pero pueden ser usadas para ilustrar la importancia del rigor en esta área. (es)
  • In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy. There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or deception in the presentation of the proof. (en)
  • In matematica, un sofisma algebrico è una dimostrazione o un ragionamento matematico contenente un errore, che porta quindi ad un risultato errato o contraddittorio. Usualmente questi sofismi sono utilizzati a scopo didattico, per dimostrare l'importanza del rigore nelle dimostrazioni matematiche; per questo motivo, gli errori presenti sono in generale molto sottili e difficili da rilevare (relativamente al pubblico cui sono destinati) ma alla fine il ragionamento presenta conclusioni evidentemente erronee. La storia della matematica registra comunque numerosi casi di ragionamenti erronei dovuti a matematici importanti. (it)
  • Математический софизм (от греч. σόφισμα — уловка, хитрая выдумка, головоломка) — ошибочное математическое утверждение, полученное с помощью рассуждений, которые кажутся правильными, но в действительности содержат ту или иную ошибку. Причины ошибки могут быть разнообразными — применение запрещённых в математике действий (например, деление на ноль), неточное использование математических законов или использование вне зоны их применимости, логические ошибки и т. д. (ru)
  • Na matemática, certos tipos de prova equivocada são frequentemente exibidos e, às vezes, coletados, como ilustrações de um conceito chamado falácia matemática. Há uma distinção entre um erro simples e uma falácia matemática em uma prova, pois um erro em uma prova leva a uma prova inválida, enquanto nos exemplos mais conhecidos de falácias matemáticas há algum elemento de ocultação ou engano na apresentação da prova. (pt)
  • Математичний софізм — це хибне математичне твердження з прихованою помилкою в математичних міркуваннях. Софізм (з грецької — майстерність, уміння, хитра вигадка, мудрість) — хибне висловлювання, яке за поверхневого розгляду здається правильним. Розв'язати софізм — означає знайти помилку в міркуваннях, за допомогою якої була створена зовнішня видимість правильності доведення.Розв'язування математичних софізмів є ефективним засобом розвитку мислення. (uk)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Fallacy_of_the_isosceles_triangle2.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 71 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software