In hyperbolic geometry, the Meyerhoff manifold is the arithmetic hyperbolic 3-manifold obtained by surgery on the figure-8 knot complement. It was introduced by Robert Meyerhoff as a possible candidate for the hyperbolic 3-manifold of smallest volume, but the Weeks manifold turned out to have slightly smaller volume. It has the second smallest volume of orientable arithmetic hyperbolic 3-manifolds, where is the zeta function of the quartic field of discriminant . Alternatively, Ted Chinburg showed that this manifold is arithmetic.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
dct:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
Link from a Wikipage to an external page | |
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage disambiguates of | |
is foaf:primaryTopic of |