About: Monogamy of entanglement     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/pc4VkDCko

In quantum physics, the "monogamy" of quantum entanglement refers to the fundamental property that it cannot be freely shared between arbitrarily many parties. In order for two qubits A and B to be maximally entangled, they must not be entangled with any third qubit C whatsoever. Even if A and B are not maximally entangled, the degree of entanglement between them constrains the degree to which either can be entangled with C. In full generality, for qubits , monogamy is characterized by the Coffman-Kundu-Wootters (CKW) inequality, which states that

AttributesValues
rdfs:label
  • Monogamy of entanglement (en)
rdfs:comment
  • In quantum physics, the "monogamy" of quantum entanglement refers to the fundamental property that it cannot be freely shared between arbitrarily many parties. In order for two qubits A and B to be maximally entangled, they must not be entangled with any third qubit C whatsoever. Even if A and B are not maximally entangled, the degree of entanglement between them constrains the degree to which either can be entangled with C. In full generality, for qubits , monogamy is characterized by the Coffman-Kundu-Wootters (CKW) inequality, which states that (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In quantum physics, the "monogamy" of quantum entanglement refers to the fundamental property that it cannot be freely shared between arbitrarily many parties. In order for two qubits A and B to be maximally entangled, they must not be entangled with any third qubit C whatsoever. Even if A and B are not maximally entangled, the degree of entanglement between them constrains the degree to which either can be entangled with C. In full generality, for qubits , monogamy is characterized by the Coffman-Kundu-Wootters (CKW) inequality, which states that where is the density matrix of the substate consisting of qubits and and is the "tangle," a quantification of bipartite entanglement equal to the square of the concurrence. Monogamy, which is closely related to the no-cloning property, is purely a feature of quantum correlations, and has no classical analogue. Supposing that two classical random variables X and Y are correlated, we can copy, or "clone," X to create arbitrarily many random variables that all share precisely the same correlation with Y. If we let X and Y be entangled quantum states instead, then X cannot be cloned, and this sort of "polygamous" outcome is impossible. The monogamy of entanglement has broad implications for applications of quantum mechanics ranging from black hole physics to quantum cryptography, where it plays a pivotal role in the security of quantum key distribution. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software