About: Nash–Moser theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDifferentialEquations, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/7rAyXiSaLM

In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.

AttributesValues
rdf:type
rdfs:label
  • Teorema de Nash-Moser (ca)
  • Théorème de Nash-Moser (fr)
  • Nash–Moser theorem (en)
  • Теорема Нэша — Мозера (ru)
rdfs:comment
  • El Teorema de Nash–Moser, atribuït als matemàtics John Forbes Nash i Jürgen Moser, és una generalització del teorema de la funció inversa en l'espai de Banach a una classe de "domar" en l'espai de Fréchet. (ca)
  • In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded. (en)
  • En mathématiques, le théorème de Nash-Moser permet de montrer qu'une application est localement inversible, dans un cadre où le théorème d'inversion locale entre espaces de Banach ne peut être appliqué, parce que l'inverse de sa différentielle induit une « perte de dérivée ». Le théorème et la stratégie de sa preuve sont utiles pour la résolution d'équations aux dérivées partielles, en cas d'échec de méthodes itératives plus standard telles que celles de Cauchy-Lipschitz ou de Newton. (fr)
  • Теорема Нэша — Мозера — одно из обобщений теоремы об обратной функции.Вариант этой теоремы был использован Джоном Форбсом Нэшем при доказательстве теоремы о регулярном вложении.Из его статьи ясно, что его метод может быть обобщен. Юрген Мозер показал, что метод Нэша применим для решения задач о периодических орбитах в небесной механике в теории Колмогорова — Арнольда — Мозера.На сегодняшний день существует несколько версий формулировки, принадлежащие Громову, Гамильтону, Хермандеру, Мозеру, Сен-Раймонду, Шварцу и Сергерарту. (ru)
rdfs:seeAlso
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • El Teorema de Nash–Moser, atribuït als matemàtics John Forbes Nash i Jürgen Moser, és una generalització del teorema de la funció inversa en l'espai de Banach a una classe de "domar" en l'espai de Fréchet. (ca)
  • In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded. (en)
  • En mathématiques, le théorème de Nash-Moser permet de montrer qu'une application est localement inversible, dans un cadre où le théorème d'inversion locale entre espaces de Banach ne peut être appliqué, parce que l'inverse de sa différentielle induit une « perte de dérivée ». Le théorème et la stratégie de sa preuve sont utiles pour la résolution d'équations aux dérivées partielles, en cas d'échec de méthodes itératives plus standard telles que celles de Cauchy-Lipschitz ou de Newton. (fr)
  • Теорема Нэша — Мозера — одно из обобщений теоремы об обратной функции.Вариант этой теоремы был использован Джоном Форбсом Нэшем при доказательстве теоремы о регулярном вложении.Из его статьи ясно, что его метод может быть обобщен. Юрген Мозер показал, что метод Нэша применим для решения задач о периодических орбитах в небесной механике в теории Колмогорова — Арнольда — Мозера.На сегодняшний день существует несколько версий формулировки, принадлежащие Громову, Гамильтону, Хермандеру, Мозеру, Сен-Раймонду, Шварцу и Сергерарту. Одно из доказательств теоремы основано на использовании модифицированного варианта процесса Ньютона нахождения решения уравнения.Другие подходы, в частности подходы Нэша и Гамильтона, следуют решению обыкновенного дифференциального уравнения в функциональном пространстве. (ru)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 64 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software