About: Perceiver     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3ZpUgVWQw5

Perceiver is a transformer adapted to be able to process non-textual data, such as images, sounds and video, and spatial data. Transformers underlie other notable systems such as BERT and GPT-3, which preceded Perceiver. It adopts an asymmetric attention mechanism to distill inputs into a latent bottleneck, allowing it to learn from large amounts of heterogeneous data. Perceiver matches or outperforms specialized models on classification tasks. Perceiver was introduced in June 2021 by DeepMind. It was followed by Perceiver IO in August 2021.

AttributesValues
rdfs:label
  • Perceptor (ca)
  • Perceiver (en)
  • Персівер (uk)
rdfs:comment
  • Perceiver is a transformer adapted to be able to process non-textual data, such as images, sounds and video, and spatial data. Transformers underlie other notable systems such as BERT and GPT-3, which preceded Perceiver. It adopts an asymmetric attention mechanism to distill inputs into a latent bottleneck, allowing it to learn from large amounts of heterogeneous data. Perceiver matches or outperforms specialized models on classification tasks. Perceiver was introduced in June 2021 by DeepMind. It was followed by Perceiver IO in August 2021. (en)
  • Персі́вер (англ. Perceiver, укр. Сприймач) — це трансформер, пристосований для обробки нетекстових даних, таких як зображення, звуки та відео, та просторових даних. Трансформери лежать в основі інших відомих систем, таких як BERT і GPT-3, які передували Персіверові. Він використовує механізм асиметричної уваги, щоби переганяти дані входу до латентного вузького подання, що дає йому можливість вчитися з великої кількості гетерогенних даних. На задачах класифікації Персівер наздоганяє або перевершує спеціалізовані моделі. (uk)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Perceiver is a transformer adapted to be able to process non-textual data, such as images, sounds and video, and spatial data. Transformers underlie other notable systems such as BERT and GPT-3, which preceded Perceiver. It adopts an asymmetric attention mechanism to distill inputs into a latent bottleneck, allowing it to learn from large amounts of heterogeneous data. Perceiver matches or outperforms specialized models on classification tasks. Perceiver was introduced in June 2021 by DeepMind. It was followed by Perceiver IO in August 2021. (en)
  • Персі́вер (англ. Perceiver, укр. Сприймач) — це трансформер, пристосований для обробки нетекстових даних, таких як зображення, звуки та відео, та просторових даних. Трансформери лежать в основі інших відомих систем, таких як BERT і GPT-3, які передували Персіверові. Він використовує механізм асиметричної уваги, щоби переганяти дані входу до латентного вузького подання, що дає йому можливість вчитися з великої кількості гетерогенних даних. На задачах класифікації Персівер наздоганяє або перевершує спеціалізовані моделі. (uk)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software