About: Priority heuristic     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/9NL2g6wstc

The priority heuristic is a simple, lexicographic decision strategy that correctly predicts classic violations of expected utility theory such as the Allais paradox, the four-fold pattern, the certainty effect, the possibility effect, or intransitivities. The heuristic maps onto Rubinstein’s three-step model, according to which people first check dominance and stop if it is present, otherwise they check for dissimilarity. To highlight Rubinstein’s model consider the following choice problem: I: 50% chance to win 2,000 50% chance to win nothing II: 52% chance to win 1,000 48% chance to win nothing

AttributesValues
rdfs:label
  • Priority heuristic (en)
rdfs:comment
  • The priority heuristic is a simple, lexicographic decision strategy that correctly predicts classic violations of expected utility theory such as the Allais paradox, the four-fold pattern, the certainty effect, the possibility effect, or intransitivities. The heuristic maps onto Rubinstein’s three-step model, according to which people first check dominance and stop if it is present, otherwise they check for dissimilarity. To highlight Rubinstein’s model consider the following choice problem: I: 50% chance to win 2,000 50% chance to win nothing II: 52% chance to win 1,000 48% chance to win nothing (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
has abstract
  • The priority heuristic is a simple, lexicographic decision strategy that correctly predicts classic violations of expected utility theory such as the Allais paradox, the four-fold pattern, the certainty effect, the possibility effect, or intransitivities. The heuristic maps onto Rubinstein’s three-step model, according to which people first check dominance and stop if it is present, otherwise they check for dissimilarity. To highlight Rubinstein’s model consider the following choice problem: I: 50% chance to win 2,000 50% chance to win nothing II: 52% chance to win 1,000 48% chance to win nothing Dominance is absent, and while chances are similar monetary outcomes are not. Rubinstein’s model predicts that people check for dissimilarity and consequently choose Gamble I. Unfortunately, dissimilarity checks are often not decisive, and Rubinstein suggested that people proceed to a third step that he left unspecified. The priority heuristic elaborates on Rubinstein’s framework by specifying this Step 3. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software