Proofs of the mathematical result that the rational number 22/7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations. Stephen Lucas calls this proof "one of the more beautiful results related to approximating π".Julian Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - إثبات أن 22/7 أكبر من π (ar)
- Demostración de que 22/7 es mayor que π (es)
- 22 / 7 dépasse π (fr)
- Dimostrazione che 22/7 è maggiore di π (it)
- 円周率が22/7より小さいことの証明 (ja)
- Proof that 22/7 exceeds π (en)
- Prova de que 22/7 é maior que π (pt)
- 證明22/7大於π (zh)
|
rdfs:comment
| - غالبًا ما يستخدم الكسر 22/7 أو 3+1/7 قيمةً تقريبيةً للعدد باي، وقد كان أرخميدس أول من فطن إلى جعله قيمةً مقربةً له حوالي سنة 250 ق.م. لكن الكسر بذاته يعطي قيمة أكبر من قيمة العدد باي، حيث أنه عند قسمة الكسر نجد أنه يتطابق مع العدد باي حتى 3 رتب فقط (3.14) و بعدها تتجاوز قيمته قيمة العدد باي بنسبة حوالي 0.04%. (ar)
- 有名な数学的事実であるところの、円周率 π が 22/7 より小さいことの証明(えんしゅうりつが7ぶんの22よりちいさいことのしょうめい)は、古代ギリシアのアルキメデスに始まり、何通りも与えられている。本項では、そのうちの一つで、微分積分学の初等的なテクニックのみを用いる、近年に発見された証明を扱う。この証明は、その数学的な美およびディオファントス近似の理論との関係によって、現代数学においても注目されてきた。スティーヴン・ルーカスは、これを「π の近似に関する最も美しい結果の一つ」と呼び、ジュリアン・ハヴィルは、円周率の連分数近似の議論を終える際に「この結果に言及せざるを得ない」と述べた上で証明を示している。 もし円周率が 3.14159 に近いことを知っていれば、22/7(3.142857 に近い)よりも小さいことは自明である。しかし、π < 22/7 を示すのは、π が 3.14159 に近いことを示すよりもずっと手間は小さい。この証明の評価方法は一般化され、円周率の値を計算する系統的な方法になっている。 (ja)
- A demonstração da famosa desigualdade remonta à antiguidade. A versão apresentada neste verbete usa recursos modernos mas não vai além de conceitos básicos do cálculo. O objetivo desta apresentação não é convencer o leitor da desigualdade, dado que existem métodos sistemáticos de calcular o valor de pi com aproximação arbitrária. A elegância desta prova resulta da ligação com a teoria das aproximações diofantinas. Stephen Lucas afirmou ser esta demonstração "um dos mais belos resultados ligados à aproximação de π". Julian Havil finaliza uma discussão sobre frações continuadas aproximantes de π com este teorema, afirmando ser "impossivel resistir a mencioná-lo" naquele contexto. (pt)
- 人們經常使用這個有理數作為圓周率的丢番圖逼近。在的連分數表達中,是它的一個渐近分數。從這兩個數字的小數形式可見是大於的: 這個近似值從古代就有人使用。縱使阿基米德並非這個近似值的始創者,但他證明了高估了圓周率。他以大於外切正96邊形的周界:該圓直徑之比作證明。 這個近似值常被稱為「約率」,除這以外,常用的近似值還有同是由祖沖之在5世紀提出的密率:。 以下是另一個的證明,所用到的只是微積分的基本技巧。它本來只是用於顯示可以用有系統的方法計算π的值,而非以證明為最終目標。它比起一些基本證明更容易理解。它的優雅是由於它和丟番圖逼近的關連。路卡斯稱這條公式為「其中一個估計π值的最美麗結果」。Havil以這個結果作爲一個有關以連分數估計的討論之結尾,說它在該範疇是「不得不提及」的。 (zh)
- Las demostraciones matemáticas que indican el famoso resultado de que el número racional 22⁄7 es superior a π se remontan a la Antigüedad. Una de estas demostraciones, desarrollada más recientemente pero que requiere solo técnicas elementales del cálculo, ha llamado la atención en las matemáticas modernas debido a su belleza matemática y sus conexiones con la teoría de las aproximaciones diofánticas. Stephen Lucas califica esta proposición de "uno de los resultados más hermosos relacionados con la aproximación de π ". (es)
- Les démonstrations du célèbre résultat mathématique selon lequel le nombre rationnel 22/7 est supérieur à π remontent à l'Antiquité. Stephen Lucas qualifie cette proposition de « l'un des plus beaux résultats liés à l'approximation de π ». (de) met fin à une discussion sur les fractions approchant π avec ce résultat, le décrivant comme « impossible de ne pas être mentionné » dans ce contexte. (fr)
- Proofs of the mathematical result that the rational number 22/7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations. Stephen Lucas calls this proof "one of the more beautiful results related to approximating π".Julian Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context. (en)
- Le dimostrazioni del famoso risultato matematico che il numero razionale è maggiore di π (pi greco) risalgono fino all'antichità. Una di queste dimostrazioni, recentemente sviluppata e che richiede solo conoscenze elementari dell'analisi, ha attirato l'attenzione dei matematici moderni per la sua eleganza matematica e la sua connessione alla teoria delle approssimazioni diofantee. Stephen Lucas definì questa dimostrazione «uno dei più bei risultati sull'approssimazione di ».Julian Havil concluse una discussione sulle approssimazioni della frazione continua di con questa disuguaglianza, affermando che fosse «impossibile resistere dal menzionarla» in quel contesto. (it)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - غالبًا ما يستخدم الكسر 22/7 أو 3+1/7 قيمةً تقريبيةً للعدد باي، وقد كان أرخميدس أول من فطن إلى جعله قيمةً مقربةً له حوالي سنة 250 ق.م. لكن الكسر بذاته يعطي قيمة أكبر من قيمة العدد باي، حيث أنه عند قسمة الكسر نجد أنه يتطابق مع العدد باي حتى 3 رتب فقط (3.14) و بعدها تتجاوز قيمته قيمة العدد باي بنسبة حوالي 0.04%. (ar)
- Les démonstrations du célèbre résultat mathématique selon lequel le nombre rationnel 22/7 est supérieur à π remontent à l'Antiquité. Stephen Lucas qualifie cette proposition de « l'un des plus beaux résultats liés à l'approximation de π ». (de) met fin à une discussion sur les fractions approchant π avec ce résultat, le décrivant comme « impossible de ne pas être mentionné » dans ce contexte. Le but n'est pas d'abord de convaincre le lecteur que 22/7 est en effet plus grand que π ; des méthodes de calcul systématiques de la valeur de π existent. Ce qui suit est une démonstration mathématique moderne que 22/7 > π, nécessitant uniquement des techniques élémentaires de calcul. Sa simplicité et son élégance résultent de ses liens avec la théorie des approximations diophantiennes. (fr)
- Las demostraciones matemáticas que indican el famoso resultado de que el número racional 22⁄7 es superior a π se remontan a la Antigüedad. Una de estas demostraciones, desarrollada más recientemente pero que requiere solo técnicas elementales del cálculo, ha llamado la atención en las matemáticas modernas debido a su belleza matemática y sus conexiones con la teoría de las aproximaciones diofánticas. Stephen Lucas califica esta proposición de "uno de los resultados más hermosos relacionados con la aproximación de π ". El objetivo de esta demostración no es en esencia convencer al lector de que 22⁄7 es, efectivamente, más grande qué π. Existen métodos de cálculo sistemático que obtienen el valor de π. Lo que sigue es una demostración matemática moderna que demuestra que 22/7 > π, utilizando solamente las técnicas elementales del cálculo. Su sencillez y su elegancia resultan vínculos con la teoría de las aproximaciones diofánticas. (es)
- Proofs of the mathematical result that the rational number 22/7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations. Stephen Lucas calls this proof "one of the more beautiful results related to approximating π".Julian Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context. The purpose of the proof is not primarily to convince its readers that 22/7 (or 3+1/7) is indeed bigger than π; systematic methods of computing the value of π exist. If one knows that π is approximately 3.14159, then it trivially follows that π < 22/7, which is approximately 3.142857. But it takes much less work to show that π < 22/7 by the method used in this proof than to show that π is approximately 3.14159. (en)
- 有名な数学的事実であるところの、円周率 π が 22/7 より小さいことの証明(えんしゅうりつが7ぶんの22よりちいさいことのしょうめい)は、古代ギリシアのアルキメデスに始まり、何通りも与えられている。本項では、そのうちの一つで、微分積分学の初等的なテクニックのみを用いる、近年に発見された証明を扱う。この証明は、その数学的な美およびディオファントス近似の理論との関係によって、現代数学においても注目されてきた。スティーヴン・ルーカスは、これを「π の近似に関する最も美しい結果の一つ」と呼び、ジュリアン・ハヴィルは、円周率の連分数近似の議論を終える際に「この結果に言及せざるを得ない」と述べた上で証明を示している。 もし円周率が 3.14159 に近いことを知っていれば、22/7(3.142857 に近い)よりも小さいことは自明である。しかし、π < 22/7 を示すのは、π が 3.14159 に近いことを示すよりもずっと手間は小さい。この証明の評価方法は一般化され、円周率の値を計算する系統的な方法になっている。 (ja)
- Le dimostrazioni del famoso risultato matematico che il numero razionale è maggiore di π (pi greco) risalgono fino all'antichità. Una di queste dimostrazioni, recentemente sviluppata e che richiede solo conoscenze elementari dell'analisi, ha attirato l'attenzione dei matematici moderni per la sua eleganza matematica e la sua connessione alla teoria delle approssimazioni diofantee. Stephen Lucas definì questa dimostrazione «uno dei più bei risultati sull'approssimazione di ».Julian Havil concluse una discussione sulle approssimazioni della frazione continua di con questa disuguaglianza, affermando che fosse «impossibile resistere dal menzionarla» in quel contesto. Lo scopo principale della dimostrazione non è quello di convincere i lettore che è effettivamente maggiore di ; esistono infatti dei metodi sistematici per calcolare il valore di . Se si sa che è approssimativamente , allora segue banalmente che , il quale è circa . Tuttavia è più semplice dimostrare che utilizzando il metodo di questa dimostrazione invece di mostrare che è approssimativamente . (it)
- A demonstração da famosa desigualdade remonta à antiguidade. A versão apresentada neste verbete usa recursos modernos mas não vai além de conceitos básicos do cálculo. O objetivo desta apresentação não é convencer o leitor da desigualdade, dado que existem métodos sistemáticos de calcular o valor de pi com aproximação arbitrária. A elegância desta prova resulta da ligação com a teoria das aproximações diofantinas. Stephen Lucas afirmou ser esta demonstração "um dos mais belos resultados ligados à aproximação de π". Julian Havil finaliza uma discussão sobre frações continuadas aproximantes de π com este teorema, afirmando ser "impossivel resistir a mencioná-lo" naquele contexto. (pt)
- 人們經常使用這個有理數作為圓周率的丢番圖逼近。在的連分數表達中,是它的一個渐近分數。從這兩個數字的小數形式可見是大於的: 這個近似值從古代就有人使用。縱使阿基米德並非這個近似值的始創者,但他證明了高估了圓周率。他以大於外切正96邊形的周界:該圓直徑之比作證明。 這個近似值常被稱為「約率」,除這以外,常用的近似值還有同是由祖沖之在5世紀提出的密率:。 以下是另一個的證明,所用到的只是微積分的基本技巧。它本來只是用於顯示可以用有系統的方法計算π的值,而非以證明為最終目標。它比起一些基本證明更容易理解。它的優雅是由於它和丟番圖逼近的關連。路卡斯稱這條公式為「其中一個估計π值的最美麗結果」。Havil以這個結果作爲一個有關以連分數估計的討論之結尾,說它在該範疇是「不得不提及」的。 (zh)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |