About: QR decomposition     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:VectorAlgebra106013298, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2Cq7s5MxYY

In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR algorithm.

AttributesValues
rdf:type
rdfs:label
  • تحلل كيو آر (ar)
  • Descomposició QR (ca)
  • QR rozklad (cs)
  • QR-Zerlegung (de)
  • QR-faktorigo (eo)
  • Factorización QR (es)
  • Décomposition QR (fr)
  • Decomposizione QR (it)
  • QR分解 (ja)
  • QR 분해 (ko)
  • QR decomposition (en)
  • QR-decompositie (nl)
  • Rozkład QR (pl)
  • Decomposição QR (pt)
  • QR-разложение (ru)
  • QR-faktorisering (sv)
  • QR-розклад матриці (uk)
  • QR分解 (zh)
rdfs:comment
  • QR rozklad dané matice je způsob, jak zapsat tuto matici jako součin dvou matic, z nichž jedna je ortogonální (tj. její sloupce tvoří ortonormální systém) a druhá je v horním trojúhelníkovém tvaru. (Pozor, nezaměňovat QR rozklad s QR algoritmem, který slouží k výpočtu vlastních čísel čtvercové matice.) (cs)
  • En lineara algebro, QR-malkomponaĵo aŭ QR-faktorigo de matrico estas de la matrico en ortan kaj dekstran triangulan matricojn. QR-malkomponaĵo estas ofte uzata por solvado de , kaj estas la bazo por aparta , la . (eo)
  • En álgebra lineal, la descomposición o factorización QR de una matriz es una descomposición de la misma como producto de una matriz ortogonal por una triangular superior. La descomposición QR es la base del algoritmo QR utilizado para el cálculo de los vectores y valores propios de una matriz. (es)
  • En algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QTQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QTY. Ceci permettra une résolution rapide du système sans avoir à calculer la matrice inverse de A. (fr)
  • In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR algorithm. (en)
  • QR分解(キューアールぶんかい、英: QR decomposition, QR factorization)とは、m × n 実行列 Aを、 m 次直交行列 Q と m × n 上三角行列 R との積への分解により表すこと、またはそう表した表現をいう。このような分解は常に存在する。 QR分解は線型最小二乗問題を解くために使用される。また、固有値問題の数値解法の1つであるQR法の基礎となっている。 (ja)
  • In matematica, in particolare in algebra lineare, la decomposizione QR o fattorizzazione QR di una matrice quadrata a coefficienti reali o complessi è una scomposizione del tipo dove è una matrice ortogonale, e è una matrice triangolare superiore. Si può dimostrare che tutte le matrici quadrate ammettono una decomposizione QR, anche se essa non è unica. Nel caso in cui la matrice siaa coefficienti complessi, allora è una matrice unitaria. (it)
  • 선형대수학에서 QR 분해(영어: QR decomposition, QR factorization)는 실수 행렬을 직교 행렬과 상삼각 행렬의 곱으로 나타내는 행렬 분해이다. 그람-슈미트 과정이나 하우스홀더 행렬이나 기븐스 회전을 통해 얻을 수 있으며, 이나 에서 쓰인다. (ko)
  • Rozkład QR – w algebrze liniowej rozkład macierzy do postaci iloczynu dwóch macierzy gdzie jest macierzą ortogonalną i jest macierzą trójkątną górną. Na bazie rozkładu QR możliwa jest realizacja metody najmniejszych kwadratów oraz metod rozwiązywania układów równań liniowych. (pl)
  • -разложение матрицы — представление матрицы в виде произведения унитарной (или ортогональной матрицы) и верхнетреугольной матрицы. QR-разложение является основой одного из методов поиска собственных векторов и чисел матрицы — QR-алгоритма. (ru)
  • Inom linjär algebra är QR-faktorisering en matrisfaktorisering av en (reell) matris i en ortogonal matris och en triangulär matris. (sv)
  • Em álgebra linear, uma decomposição QR (também chamada de fatoração QR) de uma matriz é uma decomposição de uma matriz A em um produto A = QR de uma matriz ortogonal Q e uma matriz triangular superior R. A decomposição QR é usado frequentemente para resolver o problema de mínimos quadrados linear e é a base para um determinado algoritmo de autovalores, o algoritmo QR. (pt)
  • QR分解法是三種将矩阵分解的方式之一。這種方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积。QR分解经常用来解线性最小二乘法问题。QR分解也是特定即的基础。 (zh)
  • QR-розклад матриці — представлення матриці у вигляді добутку унітарної та правої трикутної матриці. Матриця A розміру m×n може бути представлена у вигляді де Q — унітарна матриця розміру m×m, R — верхня трикутна матриця розміру m×n. Також можливі представлення QL, RQ, та LQ (де L — нижня трикутна матриця). Для m×n матриці A, з m ≥ n нижні (m−n) рядків m×n верхньої трикутної матриці усі нульові, тому часто буває корисно розбити R, або R і Q: де R1 — це n×n верхня трикутна матриця, 0 — це (m − n)×n нульова матриця, Q1 — це m×n, Q2 — це m×(m − n) і Q1 та Q2 обидві мають ортогональні стовпчики. (uk)
  • في الجبر الخطي، تحليل QR (بالإنجليزية: QR decomposition)‏ لمصفوفة هو طريقة التحليل أو الإحلال QR وتعرف أيضا بطريقة عوامل، QR عبارة عن تحليل أو احلال المصفوفة A وادخالها في المعادلة: من مصفوفة متعامدة Q ومصفوفة ثلاثية R. كثيرا ماتستخدم طريقة التحليل QR لحل مسائل المربعات الخطية وايضا تعتبر من الأساسيات الخاصة لخوارزميات معامل التحول الخطي. (ar)
  • En àlgebra lineal, una descomposició QR (també anomenada factorització QR) d'una matriu és una descomposició d'una matriu A en el producte A=QR d'una matriu ortogonal Q per una matriu triangular superior R (de l'anglès right, dreta, ja que una matriu triangular superior té tots els seus elements no-nuls a sobre i a la dreta de la diagonal principal –inclosa–). La descomposició QR es fa servir en la resolució de problemes de mínims quadrats, i és la base per un algorisme especial pel càlcul dels valors propis d'una matriu, l'. (ca)
  • Die QR-Zerlegung oder QR-Faktorisierung ist ein Begriff aus den mathematischen Teilgebieten der linearen Algebra und Numerik. Man bezeichnet damit die Zerlegung einer Matrix in das Produkt zweier anderer Matrizen, wobei eine orthogonale bzw. unitäre Matrix und eine obere Dreiecksmatrix ist. Die QR-Zerlegung ist ein Spezialfall der Iwasawa-Zerlegung. Eine solche Zerlegung existiert stets und kann mit verschiedenen Algorithmen berechnet werden. Die bekanntesten davon sind * Householdertransformationen * Givens-Rotationen * Gram-Schmidtsches Orthogonalisierungsverfahren. (de)
  • In de lineaire algebra is een QR-decompositie van een vierkante matrix een opsplitsing van die matrix in een product van een orthogonale matrix en een bovendriehoeksmatrix . QR-decompositie kan gegeneraliseerd worden voor niet-vierkante matrices, waarbij de bovendriehoeksmatrix geen vierkante matrix is, maar dezelfde afmetingen heeft als . QR-decompositie wordt bij de kleinste-kwadratenmethode veel gebruikt voor het oplossen van het stelsel lineaire vergelijkingen. Het is de basis voor het , een speciaal algoritme voor het eigenwaarde-probleem. (nl)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Householder.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software