In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism A → B of chain complexes (respectively, cochain complexes) such that the induced morphisms of homology groups (respectively, of cohomology groups) are isomorphisms for all n. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory.
Attributes | Values |
---|
rdfs:label
| - Quasiisomorphismus (de)
- Quasi-isomorphisme (fr)
- 擬同型 (ja)
- Quasi-isomorphism (en)
- Kvasiisomorfi (sv)
- 拟同构 (zh)
|
rdfs:comment
| - Im mathematischen Teilgebiet der homologischen Algebra ist ein Quasiisomorphismus eine Kettenabbildung zwischen zwei Kettenkomplexen, die Isomorphismen zwischen den Homologiegruppen induziert. (de)
- In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism A → B of chain complexes (respectively, cochain complexes) such that the induced morphisms of homology groups (respectively, of cohomology groups) are isomorphisms for all n. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. (en)
- ホモロジー代数において、擬同型とはチェイン複体(あるいはコチェイン複体)の射 A → B であってホモロジー群(あるいはコホモロジー群)に誘導される射 がすべての n に対して同型写像であるような射のことをいう。 モデル圏(model categories)の理論では、圏の対象が鎖複体あるいは余鎖複体のときに、擬同型を(weak equivalence)のクラスとして用いることがある。これはホモトピー論の(Bousfield localization)の意味でホモロジーの局所論に至る。 (ja)
- Inom homologisk algebra är en kvasiisomorfi en morfism A → B av kedjekomplex (respektive kokedjekomplex) sådant att morfismerna av homologigrupper (respektive kohomologigrupper) är isomorfier för alla n. (sv)
- 拟同构是同调代数中的一个概念。链复形间的态射被称为拟同构,如果它所诱导的所有同调群间的同态都是同构。上链复形间的态射被称为拟同构,如果它所诱导的所有上同调群间的同态都是同构。 拟同构给出导出范畴中的同构。 (zh)
- En mathématiques, un quasi-isomorphisme est une application induisant un isomorphisme en homologie. Cette définition s'applique aux morphismes de complexes différentiels et notamment aux complexes de chaines ou de cochaines, mais aussi aux applications continues entre espaces topologiques via les différentes théories d'homologie. (fr)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - Im mathematischen Teilgebiet der homologischen Algebra ist ein Quasiisomorphismus eine Kettenabbildung zwischen zwei Kettenkomplexen, die Isomorphismen zwischen den Homologiegruppen induziert. (de)
- En mathématiques, un quasi-isomorphisme est une application induisant un isomorphisme en homologie. Cette définition s'applique aux morphismes de complexes différentiels et notamment aux complexes de chaines ou de cochaines, mais aussi aux applications continues entre espaces topologiques via les différentes théories d'homologie. Toute équivalence d'homotopie est un quasi-isomorphisme mais la réciproque est fausse. En particulier, l'existence d'un quasi-isomorphisme entre deux espaces n'implique pas l'existence d'un quasi-isomorphisme réciproque. Cependant, si est un quasi-isomorphisme entre deux espaces simplement connexes, c'est une équivalence faible d'homotopie. Si et sont des CW-complexes, ceci implique que est une équivalence (forte) d'homotopie par le théorème de Whitehead. La relation d'équivalence engendrée par les quasi-isomorphismes est donc décrite par l'existence d'une chaine (zig-zag) de quasi-isomorphismes reliant deux espaces donnés. Le type d' (en) d'un espace est ainsi la classe d'équivalence induite les quasi-isomorphismes en homologie rationnelle. Deux complexes différentiels de groupes abéliens libres ou d'espaces vectoriels (ou, plus généralement, de modules libres sur un anneau principal)[réf. souhaitée] qui ont même homologie sont homotopiquement équivalents (donc quasi-isomorphes) mais les deux complexes suivants de groupes abéliens ont même homologie sans qu'il existe de quasi-isomorphisme entre eux (dans un sens ou dans l'autre) : (fr)
- In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism A → B of chain complexes (respectively, cochain complexes) such that the induced morphisms of homology groups (respectively, of cohomology groups) are isomorphisms for all n. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. (en)
- ホモロジー代数において、擬同型とはチェイン複体(あるいはコチェイン複体)の射 A → B であってホモロジー群(あるいはコホモロジー群)に誘導される射 がすべての n に対して同型写像であるような射のことをいう。 モデル圏(model categories)の理論では、圏の対象が鎖複体あるいは余鎖複体のときに、擬同型を(weak equivalence)のクラスとして用いることがある。これはホモトピー論の(Bousfield localization)の意味でホモロジーの局所論に至る。 (ja)
- Inom homologisk algebra är en kvasiisomorfi en morfism A → B av kedjekomplex (respektive kokedjekomplex) sådant att morfismerna av homologigrupper (respektive kohomologigrupper) är isomorfier för alla n. (sv)
- 拟同构是同调代数中的一个概念。链复形间的态射被称为拟同构,如果它所诱导的所有同调群间的同态都是同构。上链复形间的态射被称为拟同构,如果它所诱导的所有上同调群间的同态都是同构。 拟同构给出导出范畴中的同构。 (zh)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |