About: Quasi-isomorphism     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5wkC69TyGX

In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism A → B of chain complexes (respectively, cochain complexes) such that the induced morphisms of homology groups (respectively, of cohomology groups) are isomorphisms for all n. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory.

AttributesValues
rdfs:label
  • Quasiisomorphismus (de)
  • Quasi-isomorphisme (fr)
  • 擬同型 (ja)
  • Quasi-isomorphism (en)
  • Kvasiisomorfi (sv)
  • 拟同构 (zh)
rdfs:comment
  • Im mathematischen Teilgebiet der homologischen Algebra ist ein Quasiisomorphismus eine Kettenabbildung zwischen zwei Kettenkomplexen, die Isomorphismen zwischen den Homologiegruppen induziert. (de)
  • In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism A → B of chain complexes (respectively, cochain complexes) such that the induced morphisms of homology groups (respectively, of cohomology groups) are isomorphisms for all n. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. (en)
  • ホモロジー代数において、擬同型とはチェイン複体(あるいはコチェイン複体)の射 A → B であってホモロジー群(あるいはコホモロジー群)に誘導される射 がすべての n に対して同型写像であるような射のことをいう。 モデル圏(model categories)の理論では、圏の対象が鎖複体あるいは余鎖複体のときに、擬同型を(weak equivalence)のクラスとして用いることがある。これはホモトピー論の(Bousfield localization)の意味でホモロジーの局所論に至る。 (ja)
  • Inom homologisk algebra är en kvasiisomorfi en morfism A → B av kedjekomplex (respektive kokedjekomplex) sådant att morfismerna av homologigrupper (respektive kohomologigrupper) är isomorfier för alla n. (sv)
  • 拟同构是同调代数中的一个概念。链复形间的态射被称为拟同构,如果它所诱导的所有同调群间的同态都是同构。上链复形间的态射被称为拟同构,如果它所诱导的所有上同调群间的同态都是同构。 拟同构给出导出范畴中的同构。 (zh)
  • En mathématiques, un quasi-isomorphisme est une application induisant un isomorphisme en homologie. Cette définition s'applique aux morphismes de complexes différentiels et notamment aux complexes de chaines ou de cochaines, mais aussi aux applications continues entre espaces topologiques via les différentes théories d'homologie. (fr)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Im mathematischen Teilgebiet der homologischen Algebra ist ein Quasiisomorphismus eine Kettenabbildung zwischen zwei Kettenkomplexen, die Isomorphismen zwischen den Homologiegruppen induziert. (de)
  • En mathématiques, un quasi-isomorphisme est une application induisant un isomorphisme en homologie. Cette définition s'applique aux morphismes de complexes différentiels et notamment aux complexes de chaines ou de cochaines, mais aussi aux applications continues entre espaces topologiques via les différentes théories d'homologie. Toute équivalence d'homotopie est un quasi-isomorphisme mais la réciproque est fausse. En particulier, l'existence d'un quasi-isomorphisme entre deux espaces n'implique pas l'existence d'un quasi-isomorphisme réciproque. Cependant, si est un quasi-isomorphisme entre deux espaces simplement connexes, c'est une équivalence faible d'homotopie. Si et sont des CW-complexes, ceci implique que est une équivalence (forte) d'homotopie par le théorème de Whitehead. La relation d'équivalence engendrée par les quasi-isomorphismes est donc décrite par l'existence d'une chaine (zig-zag) de quasi-isomorphismes reliant deux espaces donnés. Le type d' (en) d'un espace est ainsi la classe d'équivalence induite les quasi-isomorphismes en homologie rationnelle. Deux complexes différentiels de groupes abéliens libres ou d'espaces vectoriels (ou, plus généralement, de modules libres sur un anneau principal)[réf. souhaitée] qui ont même homologie sont homotopiquement équivalents (donc quasi-isomorphes) mais les deux complexes suivants de groupes abéliens ont même homologie sans qu'il existe de quasi-isomorphisme entre eux (dans un sens ou dans l'autre) : (fr)
  • In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism A → B of chain complexes (respectively, cochain complexes) such that the induced morphisms of homology groups (respectively, of cohomology groups) are isomorphisms for all n. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. (en)
  • ホモロジー代数において、擬同型とはチェイン複体(あるいはコチェイン複体)の射 A → B であってホモロジー群(あるいはコホモロジー群)に誘導される射 がすべての n に対して同型写像であるような射のことをいう。 モデル圏(model categories)の理論では、圏の対象が鎖複体あるいは余鎖複体のときに、擬同型を(weak equivalence)のクラスとして用いることがある。これはホモトピー論の(Bousfield localization)の意味でホモロジーの局所論に至る。 (ja)
  • Inom homologisk algebra är en kvasiisomorfi en morfism A → B av kedjekomplex (respektive kokedjekomplex) sådant att morfismerna av homologigrupper (respektive kohomologigrupper) är isomorfier för alla n. (sv)
  • 拟同构是同调代数中的一个概念。链复形间的态射被称为拟同构,如果它所诱导的所有同调群间的同态都是同构。上链复形间的态射被称为拟同构,如果它所诱导的所有上同调群间的同态都是同构。 拟同构给出导出范畴中的同构。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software