About: Quasitriangular Hopf algebra     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Science105999797, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/8eonsbh82A

In mathematics, a Hopf algebra, H, is quasitriangular if there exists an invertible element, R, of such that * for all , where is the coproduct on H, and the linear map is given by , * , * , where , , and , where , , and , are algebra morphisms determined by R is called the R-matrix. It is possible to construct a quasitriangular Hopf algebra from a Hopf algebra and its dual, using the Drinfeld quantum double construction. If the Hopf algebra H is quasitriangular, then the category of modules over H is braided with braiding .

AttributesValues
rdf:type
rdfs:label
  • Quasitriangular Hopf algebra (en)
rdfs:comment
  • In mathematics, a Hopf algebra, H, is quasitriangular if there exists an invertible element, R, of such that * for all , where is the coproduct on H, and the linear map is given by , * , * , where , , and , where , , and , are algebra morphisms determined by R is called the R-matrix. It is possible to construct a quasitriangular Hopf algebra from a Hopf algebra and its dual, using the Drinfeld quantum double construction. If the Hopf algebra H is quasitriangular, then the category of modules over H is braided with braiding . (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a Hopf algebra, H, is quasitriangular if there exists an invertible element, R, of such that * for all , where is the coproduct on H, and the linear map is given by , * , * , where , , and , where , , and , are algebra morphisms determined by R is called the R-matrix. As a consequence of the properties of quasitriangularity, the R-matrix, R, is a solution of the Yang–Baxter equation (and so a module V of H can be used to determine quasi-invariants of braids, knots and links). Also as a consequence of the properties of quasitriangularity, ; moreover , , and . One may further show that theantipode S must be a linear isomorphism, and thus S2 is an automorphism. In fact, S2 is given by conjugating by an invertible element: where (cf. Ribbon Hopf algebras). It is possible to construct a quasitriangular Hopf algebra from a Hopf algebra and its dual, using the Drinfeld quantum double construction. If the Hopf algebra H is quasitriangular, then the category of modules over H is braided with braiding . (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software